Publikation:

Time Series Projection to Highlight Trends and Outliers

Lade...
Vorschaubild

Dateien

Cakmak_2-lhh4jf6w9x756.pdf
Cakmak_2-lhh4jf6w9x756.pdfGröße: 349.38 KBDownloads: 408

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2018 MC2). 2018

Zusammenfassung

The goal of the VAST Challenge 2018 Mini Challenge 2 (MC 2) was to unveil the possible causes and effects of environmental pollution in the Boonsong Lekagul Wildlife Preserve. We propose the ViCCEx (Visual Chemical Contamination Explorer) system that enables to interactively explore the sparse multivariate river network sensor reading dataset to identify characteristics, trends, and outliers of the different sensor reading locations over time. The ViCCEx system uses a t-SNE projection to display an overview visualization, a sampling strategy view to highlight the overall sampling strategies of different chemical measurements at each sensor location, and various extracted statistics to highlight the evolution of chemical measurements. The three views are connected via linking and brushing, which enables to explore and identify possible pollution causes and effects in the preserve.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Human-centered computing, Visualization, Visualization application domains, Visual Analytics

Konferenz

IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2018 MC2), 21. Okt. 2018 - 26. Okt. 2018, Berlin
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690CAKMAK, Eren, Daniel SEEBACHER, Juri F. BUCHMÜLLER, Daniel A. KEIM, 2018. Time Series Projection to Highlight Trends and Outliers. IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2018 MC2). Berlin, 21. Okt. 2018 - 26. Okt. 2018. In: IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2018 MC2). 2018
BibTex
@inproceedings{Cakmak2018Serie-45035,
  year={2018},
  title={Time Series Projection to Highlight Trends and Outliers},
  url={https://scibib.dbvis.de/publications/view/794},
  booktitle={IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2018 MC2)},
  author={Cakmak, Eren and Seebacher, Daniel and Buchmüller, Juri F. and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45035">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45035"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T12:03:32Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T12:03:32Z</dc:date>
    <dc:creator>Cakmak, Eren</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45035/1/Cakmak_2-lhh4jf6w9x756.pdf"/>
    <dc:creator>Buchmüller, Juri F.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Time Series Projection to Highlight Trends and Outliers</dcterms:title>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45035/1/Cakmak_2-lhh4jf6w9x756.pdf"/>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:contributor>Buchmüller, Juri F.</dc:contributor>
    <dc:contributor>Cakmak, Eren</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">The goal of the VAST Challenge 2018 Mini Challenge 2 (MC 2) was to unveil the possible causes and effects of environmental pollution in the Boonsong Lekagul Wildlife Preserve. We propose the ViCCEx (Visual Chemical Contamination Explorer) system that enables to interactively explore the sparse multivariate river network sensor reading dataset to identify characteristics, trends, and outliers of the different sensor reading locations over time. The ViCCEx system uses a t-SNE projection to display an overview visualization, a sampling strategy view to highlight the overall sampling strategies of different chemical measurements at each sensor location, and various extracted statistics to highlight the evolution of chemical measurements. The three views are connected via linking and brushing, which enables to explore and identify possible pollution causes and effects in the preserve.</dcterms:abstract>
    <dcterms:issued>2018</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2019-02-14

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen