On a class of law invariant convex risk measures

No Thumbnail Available
Files
There are no files associated with this item.
Date
2011
Authors
Angelsberg, Gilles
Delbaen, Freddy
Kaelin, Ivo
Näf, Joachim
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Finance and Stochastics ; 15 (2011). - pp. 343-363. - Springer. - ISSN 0949-2984. - eISSN 1432-1122
Abstract
We consider the class of law invariant convex risk measures with robust representation ρh,p(X)=supf10[AV@Rs(X)f(s)−fp(s)h(s)]ds, where 1≤p<∞ and h is a positive and strictly decreasing function. The supremum is taken over the set of all Radon–Nikodým derivatives corresponding to the set of all probability measures on (0,1] which are absolutely continuous with respect to Lebesgue measure. We provide necessary and sufficient conditions for the position X such that ρ h,p(X) is real-valued and the supremum is attained. Using variational methods, an explicit formula for the maximizer is given. We exhibit two examples of such risk measures and compare them to the average value at risk.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690ANGELSBERG, Gilles, Freddy DELBAEN, Ivo KAELIN, Michael KUPPER, Joachim NÄF, 2011. On a class of law invariant convex risk measures. In: Finance and Stochastics. Springer. 15, pp. 343-363. ISSN 0949-2984. eISSN 1432-1122. Available under: doi: 10.1007/s00780-010-0145-5
BibTex
@article{Angelsberg2011class-55458,
  year={2011},
  doi={10.1007/s00780-010-0145-5},
  title={On a class of law invariant convex risk measures},
  volume={15},
  issn={0949-2984},
  journal={Finance and Stochastics},
  pages={343--363},
  author={Angelsberg, Gilles and Delbaen, Freddy and Kaelin, Ivo and Kupper, Michael and Näf, Joachim}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55458">
    <dc:creator>Angelsberg, Gilles</dc:creator>
    <dc:creator>Kaelin, Ivo</dc:creator>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <dc:contributor>Kaelin, Ivo</dc:contributor>
    <dc:creator>Kupper, Michael</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T08:59:09Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Delbaen, Freddy</dc:creator>
    <dc:contributor>Näf, Joachim</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T08:59:09Z</dc:date>
    <dc:contributor>Angelsberg, Gilles</dc:contributor>
    <dcterms:abstract xml:lang="eng">We consider the class of law invariant convex risk measures with robust representation ρ&lt;sub&gt;h,p&lt;/sub&gt;(X)=sup&lt;sub&gt;f&lt;/sub&gt;∫&lt;sup&gt;1&lt;/sup&gt;&lt;sub&gt;0&lt;/sub&gt;[AV@R&lt;sub&gt;s&lt;/sub&gt;(X)f(s)−f&lt;sup&gt;p&lt;/sup&gt;(s)h(s)]ds, where 1≤p&lt;∞ and h is a positive and strictly decreasing function. The supremum is taken over the set of all Radon–Nikodým derivatives corresponding to the set of all probability measures on (0,1] which are absolutely continuous with respect to Lebesgue measure. We provide necessary and sufficient conditions for the position X such that ρ &lt;sub&gt;h,p&lt;/sub&gt;(X) is real-valued and the supremum is attained. Using variational methods, an explicit formula for the maximizer is given. We exhibit two examples of such risk measures and compare them to the average value at risk.</dcterms:abstract>
    <dcterms:issued>2011</dcterms:issued>
    <dc:contributor>Delbaen, Freddy</dc:contributor>
    <dc:creator>Näf, Joachim</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>On a class of law invariant convex risk measures</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55458"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Yes