Publikation:

On a class of law invariant convex risk measures

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Angelsberg, Gilles
Delbaen, Freddy
Kaelin, Ivo
Näf, Joachim

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Finance and Stochastics. Springer. 2011, 15, pp. 343-363. ISSN 0949-2984. eISSN 1432-1122. Available under: doi: 10.1007/s00780-010-0145-5

Zusammenfassung

We consider the class of law invariant convex risk measures with robust representation ρh,p(X)=supf10[AV@Rs(X)f(s)−fp(s)h(s)]ds, where 1≤p<∞ and h is a positive and strictly decreasing function. The supremum is taken over the set of all Radon–Nikodým derivatives corresponding to the set of all probability measures on (0,1] which are absolutely continuous with respect to Lebesgue measure. We provide necessary and sufficient conditions for the position X such that ρ h,p(X) is real-valued and the supremum is attained. Using variational methods, an explicit formula for the maximizer is given. We exhibit two examples of such risk measures and compare them to the average value at risk.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690ANGELSBERG, Gilles, Freddy DELBAEN, Ivo KAELIN, Michael KUPPER, Joachim NÄF, 2011. On a class of law invariant convex risk measures. In: Finance and Stochastics. Springer. 2011, 15, pp. 343-363. ISSN 0949-2984. eISSN 1432-1122. Available under: doi: 10.1007/s00780-010-0145-5
BibTex
@article{Angelsberg2011class-55458,
  year={2011},
  doi={10.1007/s00780-010-0145-5},
  title={On a class of law invariant convex risk measures},
  volume={15},
  issn={0949-2984},
  journal={Finance and Stochastics},
  pages={343--363},
  author={Angelsberg, Gilles and Delbaen, Freddy and Kaelin, Ivo and Kupper, Michael and Näf, Joachim}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55458">
    <dc:creator>Angelsberg, Gilles</dc:creator>
    <dc:creator>Kaelin, Ivo</dc:creator>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <dc:contributor>Kaelin, Ivo</dc:contributor>
    <dc:creator>Kupper, Michael</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T08:59:09Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Delbaen, Freddy</dc:creator>
    <dc:contributor>Näf, Joachim</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T08:59:09Z</dc:date>
    <dc:contributor>Angelsberg, Gilles</dc:contributor>
    <dcterms:abstract xml:lang="eng">We consider the class of law invariant convex risk measures with robust representation ρ&lt;sub&gt;h,p&lt;/sub&gt;(X)=sup&lt;sub&gt;f&lt;/sub&gt;∫&lt;sup&gt;1&lt;/sup&gt;&lt;sub&gt;0&lt;/sub&gt;[AV@R&lt;sub&gt;s&lt;/sub&gt;(X)f(s)−f&lt;sup&gt;p&lt;/sup&gt;(s)h(s)]ds, where 1≤p&lt;∞ and h is a positive and strictly decreasing function. The supremum is taken over the set of all Radon–Nikodým derivatives corresponding to the set of all probability measures on (0,1] which are absolutely continuous with respect to Lebesgue measure. We provide necessary and sufficient conditions for the position X such that ρ &lt;sub&gt;h,p&lt;/sub&gt;(X) is real-valued and the supremum is attained. Using variational methods, an explicit formula for the maximizer is given. We exhibit two examples of such risk measures and compare them to the average value at risk.</dcterms:abstract>
    <dcterms:issued>2011</dcterms:issued>
    <dc:contributor>Delbaen, Freddy</dc:contributor>
    <dc:creator>Näf, Joachim</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>On a class of law invariant convex risk measures</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55458"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen