On a class of law invariant convex risk measures
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2011
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Finance and Stochastics. Springer. 2011, 15, pp. 343-363. ISSN 0949-2984. eISSN 1432-1122. Available under: doi: 10.1007/s00780-010-0145-5
Zusammenfassung
We consider the class of law invariant convex risk measures with robust representation ρh,p(X)=supf∫10[AV@Rs(X)f(s)−fp(s)h(s)]ds, where 1≤p<∞ and h is a positive and strictly decreasing function. The supremum is taken over the set of all Radon–Nikodým derivatives corresponding to the set of all probability measures on (0,1] which are absolutely continuous with respect to Lebesgue measure. We provide necessary and sufficient conditions for the position X such that ρ h,p(X) is real-valued and the supremum is attained. Using variational methods, an explicit formula for the maximizer is given. We exhibit two examples of such risk measures and compare them to the average value at risk.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
ANGELSBERG, Gilles, Freddy DELBAEN, Ivo KAELIN, Michael KUPPER, Joachim NÄF, 2011. On a class of law invariant convex risk measures. In: Finance and Stochastics. Springer. 2011, 15, pp. 343-363. ISSN 0949-2984. eISSN 1432-1122. Available under: doi: 10.1007/s00780-010-0145-5BibTex
@article{Angelsberg2011class-55458, year={2011}, doi={10.1007/s00780-010-0145-5}, title={On a class of law invariant convex risk measures}, volume={15}, issn={0949-2984}, journal={Finance and Stochastics}, pages={343--363}, author={Angelsberg, Gilles and Delbaen, Freddy and Kaelin, Ivo and Kupper, Michael and Näf, Joachim} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55458"> <dc:creator>Angelsberg, Gilles</dc:creator> <dc:creator>Kaelin, Ivo</dc:creator> <dc:contributor>Kupper, Michael</dc:contributor> <dc:contributor>Kaelin, Ivo</dc:contributor> <dc:creator>Kupper, Michael</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T08:59:09Z</dcterms:available> <dc:language>eng</dc:language> <dc:creator>Delbaen, Freddy</dc:creator> <dc:contributor>Näf, Joachim</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T08:59:09Z</dc:date> <dc:contributor>Angelsberg, Gilles</dc:contributor> <dcterms:abstract xml:lang="eng">We consider the class of law invariant convex risk measures with robust representation ρ<sub>h,p</sub>(X)=sup<sub>f</sub>∫<sup>1</sup><sub>0</sub>[AV@R<sub>s</sub>(X)f(s)−f<sup>p</sup>(s)h(s)]ds, where 1≤p<∞ and h is a positive and strictly decreasing function. The supremum is taken over the set of all Radon–Nikodým derivatives corresponding to the set of all probability measures on (0,1] which are absolutely continuous with respect to Lebesgue measure. We provide necessary and sufficient conditions for the position X such that ρ <sub>h,p</sub>(X) is real-valued and the supremum is attained. Using variational methods, an explicit formula for the maximizer is given. We exhibit two examples of such risk measures and compare them to the average value at risk.</dcterms:abstract> <dcterms:issued>2011</dcterms:issued> <dc:contributor>Delbaen, Freddy</dc:contributor> <dc:creator>Näf, Joachim</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>On a class of law invariant convex risk measures</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55458"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja