A lactate kinetics method for assessing the maximal lactate steady state workload

Loading...
Thumbnail Image
Date
2018
Authors
Hennig, Ewald M.
Stepan, Jens
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Frontiers in Physiology ; 9 (2018). - 310. - eISSN 1664-042X
Abstract
During a continuously increasing exercise workload (WL) a point will be reached at which arterial lactate accumulates rapidly. This so-called lactate threshold (LT) is associated with the maximal lactate steady state workload (MLSSW), the highest WL, at which arterial lactate concentration [LA] does not change. However, the physiological range in which the LT and the MLSSW occur has not been demonstrated directly. We used minor WL variations in the MLSSW range to assess arterial lactate kinetics in 278 treadmill and 148 bicycle ergometer exercise tests. At a certain workload, minimal further increment of running speed (0.1 - 0.15 m/s) or cycling power (7 - 10 W) caused a steep elevation of [LA] (0.9 ± 0.43 mM, maximum increase 2.4 Mm), indicating LT achievement. This sharp [LA] increase was more pronounced when higher WL increments were used (0.1 vs. 0.30 m/s, P = 0.02; 0.15 vs. 0.30 m/s, P < 0.001; 7 vs. 15 W, P = 0.002; 10 vs. 15 W, P = 0.001). A subsequent workload reduction (0.1 m/s / 7 W) stopped the [LA] increase indicating MLSSW realization. LT based determination of running speed (MLSSW) was highly reproducible on a day-to-day basis (r = 0.996, P < 0.001), valid in a 10km constant velocity setting (r = 0.981, P < 0.001) and a half marathon race (r = 0.969, P < 0.001). These results demonstrate a fine-tuned regulation of exercise-related lactate metabolism, which can be reliably captured by assessing lactate kinetics at the MLSSW.
Summary in another language
Subject (DDC)
796 Sport
Keywords
Lactate threshold, maximal lactate steady state workload, lactate kinetics, performance testing, exercise physiology
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690HERING, Gernot, Ewald M. HENNIG, Hartmut J. RIEHLE, Jens STEPAN, 2018. A lactate kinetics method for assessing the maximal lactate steady state workload. In: Frontiers in Physiology. 9, 310. eISSN 1664-042X. Available under: doi: 10.3389/fphys.2018.00310
BibTex
@article{Hering2018lacta-41805,
  year={2018},
  doi={10.3389/fphys.2018.00310},
  title={A lactate kinetics method for assessing the maximal lactate steady state workload},
  volume={9},
  journal={Frontiers in Physiology},
  author={Hering, Gernot and Hennig, Ewald M. and Riehle, Hartmut J. and Stepan, Jens},
  note={Article Number: 310}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41805">
    <dcterms:title>A lactate kinetics method for assessing the maximal lactate steady state workload</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41805/1/Hering_2-lic5x7b3iebr9.pdf"/>
    <dcterms:abstract xml:lang="eng">During a continuously increasing exercise workload (WL) a point will be reached at which arterial lactate accumulates rapidly. This so-called lactate threshold (LT) is associated with the maximal lactate steady state workload (MLSSW), the highest WL, at which arterial lactate concentration [LA] does not change. However, the physiological range in which the LT and the MLSSW occur has not been demonstrated directly. We used minor WL variations in the MLSSW range to assess arterial lactate kinetics in 278 treadmill and 148 bicycle ergometer exercise tests. At a certain workload, minimal further increment of running speed (0.1 - 0.15 m/s) or cycling power (7 - 10 W) caused a steep elevation of [LA] (0.9 ± 0.43 mM, maximum increase 2.4 Mm), indicating LT achievement. This sharp [LA] increase was more pronounced when higher WL increments were used (0.1 vs. 0.30 m/s, P = 0.02; 0.15 vs. 0.30 m/s, P &lt; 0.001; 7 vs. 15 W, P = 0.002; 10 vs. 15 W, P = 0.001). A subsequent workload reduction (0.1 m/s / 7 W) stopped the [LA] increase indicating MLSSW realization. LT based determination of running speed (MLSSW) was highly reproducible on a day-to-day basis (r = 0.996, P &lt; 0.001), valid in a 10km constant velocity setting (r = 0.981, P &lt; 0.001) and a half marathon race (r = 0.969, P &lt; 0.001). These results demonstrate a fine-tuned regulation of exercise-related lactate metabolism, which can be reliably captured by assessing lactate kinetics at the MLSSW.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/>
    <dc:creator>Stepan, Jens</dc:creator>
    <dc:contributor>Stepan, Jens</dc:contributor>
    <dc:contributor>Riehle, Hartmut J.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41805"/>
    <dc:creator>Riehle, Hartmut J.</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-16T08:28:26Z</dcterms:available>
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41805/1/Hering_2-lic5x7b3iebr9.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/>
    <dc:contributor>Hering, Gernot</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Hering, Gernot</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-16T08:28:26Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Hennig, Ewald M.</dc:creator>
    <dc:contributor>Hennig, Ewald M.</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes