Time series enable the characterization of small-scale vegetation dynamics that influence fine-scale animal behavior : an example from white storks' foraging behavior

Lade...
Vorschaubild
Dateien
Standfuß_2-lije6vg0xrug2.pdf
Standfuß_2-lije6vg0xrug2.pdfGröße: 3.77 MBDownloads: 22
Datum
2022
Autor:innen
Standfuß, Ines
Geiß, Christian
Nathan, Ran
Rotics, Shay
Kerr, Grégoire
Taubenböck, Hannes
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Remote Sensing in Ecology and Conservation. Wiley-Blackwell. 2022, 8(3), pp. 391-408. ISSN 2056-3485. eISSN 2056-3485. Available under: doi: 10.1002/rse2.251
Zusammenfassung

Agricultural activities and vegetation growth cause rapid small-scale vegetation changes which dynamically alter habitat suitability. Time series enable to track down such variations of vegetation structure and are promising to examine their impact on animals' life. Nevertheless, their potential to characterize vegetation dynamics in ways pertinent to animals' fine-scale habitat use has not been adequately explored and ecologically meaningful proxies are lacking. To address this gap, we exemplary investigated foraging activities of breeding white storks in an agricultural landscape. Reflecting on the understanding that storks require short vegetation to access prey, we examined if good foraging conditions – early growth and post-harvest/mowing periods – are detectable using the points between local minima/maxima in NDVI profiles (half-maximum). We processed 1 year of Landsat imagery to identify half-maximum periods (HM: good prey access) and non-half-maximum periods (non-HM: poor prey access) on field-scale in croplands and grasslands. Additionally, we mapped used/unused fields and retrieved foraging duration/daily visitation rates from GPS tracks of the storks. We then explored habitat use, compared habitat use with habitat availability and tested temporal predictors distinguishing between HM/non-HM in habitat selection models. Examining habitat use, storks revisited croplands and grasslands significantly more often during HM than during non-HM, while foraging duration was only prolonged in croplands during HM. However, comparing habitat use with habitat availability, we observed that storks used croplands and grasslands in significantly higher proportions during HM than during non-HM. Additionally, we found that temporal information affected storks' habitat selection and improved model performance. Our findings emphasize that the half-maximum proxy enables to coarsely distinguish temporal resource variations in storks' foraging habitats, highlighting the potential of time series for characterizing behaviorally-relevant vegetation dynamics. Such information helps to create more species-centered landscape scenarios in habitat models, allowing to unravel effects of small-scale environmental changes on wildlife to ultimately guide conservation and management.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Agricultural practices, GPS-telemetry, habitat selection, habitat use, NDVI, time series, vegetation phenology, white stork
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690STANDFUSS, Ines, Christian GEISS, Ran NATHAN, Shay ROTICS, Martina SCACCO, Grégoire KERR, Hannes TAUBENBÖCK, 2022. Time series enable the characterization of small-scale vegetation dynamics that influence fine-scale animal behavior : an example from white storks' foraging behavior. In: Remote Sensing in Ecology and Conservation. Wiley-Blackwell. 2022, 8(3), pp. 391-408. ISSN 2056-3485. eISSN 2056-3485. Available under: doi: 10.1002/rse2.251
BibTex
@article{Standfu2022-06serie-57379,
  year={2022},
  doi={10.1002/rse2.251},
  title={Time series enable the characterization of small-scale vegetation dynamics that influence fine-scale animal behavior : an example from white storks' foraging behavior},
  number={3},
  volume={8},
  issn={2056-3485},
  journal={Remote Sensing in Ecology and Conservation},
  pages={391--408},
  author={Standfuß, Ines and Geiß, Christian and Nathan, Ran and Rotics, Shay and Scacco, Martina and Kerr, Grégoire and Taubenböck, Hannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57379">
    <dc:contributor>Scacco, Martina</dc:contributor>
    <dc:creator>Nathan, Ran</dc:creator>
    <dc:creator>Geiß, Christian</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57379"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Time series enable the characterization of small-scale vegetation dynamics that influence fine-scale animal behavior : an example from white storks' foraging behavior</dcterms:title>
    <dc:contributor>Standfuß, Ines</dc:contributor>
    <dc:creator>Rotics, Shay</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-29T09:59:38Z</dc:date>
    <dc:creator>Kerr, Grégoire</dc:creator>
    <dc:creator>Scacco, Martina</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-29T09:59:38Z</dcterms:available>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Standfuß, Ines</dc:creator>
    <dc:contributor>Kerr, Grégoire</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Rotics, Shay</dc:contributor>
    <dc:contributor>Taubenböck, Hannes</dc:contributor>
    <dc:contributor>Nathan, Ran</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57379/1/Standfu%c3%9f_2-lije6vg0xrug2.pdf"/>
    <dcterms:abstract xml:lang="eng">Agricultural activities and vegetation growth cause rapid small-scale vegetation changes which dynamically alter habitat suitability. Time series enable to track down such variations of vegetation structure and are promising to examine their impact on animals' life. Nevertheless, their potential to characterize vegetation dynamics in ways pertinent to animals' fine-scale habitat use has not been adequately explored and ecologically meaningful proxies are lacking. To address this gap, we exemplary investigated foraging activities of breeding white storks in an agricultural landscape. Reflecting on the understanding that storks require short vegetation to access prey, we examined if good foraging conditions – early growth and post-harvest/mowing periods – are detectable using the points between local minima/maxima in NDVI profiles (half-maximum). We processed 1 year of Landsat imagery to identify half-maximum periods (HM: good prey access) and non-half-maximum periods (non-HM: poor prey access) on field-scale in croplands and grasslands. Additionally, we mapped used/unused fields and retrieved foraging duration/daily visitation rates from GPS tracks of the storks. We then explored habitat use, compared habitat use with habitat availability and tested temporal predictors distinguishing between HM/non-HM in habitat selection models. Examining habitat use, storks revisited croplands and grasslands significantly more often during HM than during non-HM, while foraging duration was only prolonged in croplands during HM. However, comparing habitat use with habitat availability, we observed that storks used croplands and grasslands in significantly higher proportions during HM than during non-HM. Additionally, we found that temporal information affected storks' habitat selection and improved model performance. Our findings emphasize that the half-maximum proxy enables to coarsely distinguish temporal resource variations in storks' foraging habitats, highlighting the potential of time series for characterizing behaviorally-relevant vegetation dynamics. Such information helps to create more species-centered landscape scenarios in habitat models, allowing to unravel effects of small-scale environmental changes on wildlife to ultimately guide conservation and management.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57379/1/Standfu%c3%9f_2-lije6vg0xrug2.pdf"/>
    <dc:creator>Taubenböck, Hannes</dc:creator>
    <dcterms:issued>2022-06</dcterms:issued>
    <dc:contributor>Geiß, Christian</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen