Publikation:

Time series enable the characterization of small-scale vegetation dynamics that influence fine-scale animal behavior : an example from white storks' foraging behavior

Lade...
Vorschaubild

Dateien

Standfuß_2-lije6vg0xrug2.pdf
Standfuß_2-lije6vg0xrug2.pdfGröße: 3.77 MBDownloads: 28

Datum

2022

Autor:innen

Standfuß, Ines
Geiß, Christian
Nathan, Ran
Rotics, Shay
Kerr, Grégoire
Taubenböck, Hannes

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Remote Sensing in Ecology and Conservation. Wiley-Blackwell. 2022, 8(3), S. 391-408. ISSN 2056-3485. eISSN 2056-3485. Verfügbar unter: doi: 10.1002/rse2.251

Zusammenfassung

Agricultural activities and vegetation growth cause rapid small-scale vegetation changes which dynamically alter habitat suitability. Time series enable to track down such variations of vegetation structure and are promising to examine their impact on animals' life. Nevertheless, their potential to characterize vegetation dynamics in ways pertinent to animals' fine-scale habitat use has not been adequately explored and ecologically meaningful proxies are lacking. To address this gap, we exemplary investigated foraging activities of breeding white storks in an agricultural landscape. Reflecting on the understanding that storks require short vegetation to access prey, we examined if good foraging conditions – early growth and post-harvest/mowing periods – are detectable using the points between local minima/maxima in NDVI profiles (half-maximum). We processed 1 year of Landsat imagery to identify half-maximum periods (HM: good prey access) and non-half-maximum periods (non-HM: poor prey access) on field-scale in croplands and grasslands. Additionally, we mapped used/unused fields and retrieved foraging duration/daily visitation rates from GPS tracks of the storks. We then explored habitat use, compared habitat use with habitat availability and tested temporal predictors distinguishing between HM/non-HM in habitat selection models. Examining habitat use, storks revisited croplands and grasslands significantly more often during HM than during non-HM, while foraging duration was only prolonged in croplands during HM. However, comparing habitat use with habitat availability, we observed that storks used croplands and grasslands in significantly higher proportions during HM than during non-HM. Additionally, we found that temporal information affected storks' habitat selection and improved model performance. Our findings emphasize that the half-maximum proxy enables to coarsely distinguish temporal resource variations in storks' foraging habitats, highlighting the potential of time series for characterizing behaviorally-relevant vegetation dynamics. Such information helps to create more species-centered landscape scenarios in habitat models, allowing to unravel effects of small-scale environmental changes on wildlife to ultimately guide conservation and management.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Agricultural practices, GPS-telemetry, habitat selection, habitat use, NDVI, time series, vegetation phenology, white stork

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690STANDFUSS, Ines, Christian GEISS, Ran NATHAN, Shay ROTICS, Martina SCACCO, Grégoire KERR, Hannes TAUBENBÖCK, 2022. Time series enable the characterization of small-scale vegetation dynamics that influence fine-scale animal behavior : an example from white storks' foraging behavior. In: Remote Sensing in Ecology and Conservation. Wiley-Blackwell. 2022, 8(3), S. 391-408. ISSN 2056-3485. eISSN 2056-3485. Verfügbar unter: doi: 10.1002/rse2.251
BibTex
@article{Standfu2022-06serie-57379,
  year={2022},
  doi={10.1002/rse2.251},
  title={Time series enable the characterization of small-scale vegetation dynamics that influence fine-scale animal behavior : an example from white storks' foraging behavior},
  number={3},
  volume={8},
  issn={2056-3485},
  journal={Remote Sensing in Ecology and Conservation},
  pages={391--408},
  author={Standfuß, Ines and Geiß, Christian and Nathan, Ran and Rotics, Shay and Scacco, Martina and Kerr, Grégoire and Taubenböck, Hannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57379">
    <dc:contributor>Scacco, Martina</dc:contributor>
    <dc:creator>Nathan, Ran</dc:creator>
    <dc:creator>Geiß, Christian</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57379"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Time series enable the characterization of small-scale vegetation dynamics that influence fine-scale animal behavior : an example from white storks' foraging behavior</dcterms:title>
    <dc:contributor>Standfuß, Ines</dc:contributor>
    <dc:creator>Rotics, Shay</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-29T09:59:38Z</dc:date>
    <dc:creator>Kerr, Grégoire</dc:creator>
    <dc:creator>Scacco, Martina</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-29T09:59:38Z</dcterms:available>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Standfuß, Ines</dc:creator>
    <dc:contributor>Kerr, Grégoire</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Rotics, Shay</dc:contributor>
    <dc:contributor>Taubenböck, Hannes</dc:contributor>
    <dc:contributor>Nathan, Ran</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57379/1/Standfu%c3%9f_2-lije6vg0xrug2.pdf"/>
    <dcterms:abstract xml:lang="eng">Agricultural activities and vegetation growth cause rapid small-scale vegetation changes which dynamically alter habitat suitability. Time series enable to track down such variations of vegetation structure and are promising to examine their impact on animals' life. Nevertheless, their potential to characterize vegetation dynamics in ways pertinent to animals' fine-scale habitat use has not been adequately explored and ecologically meaningful proxies are lacking. To address this gap, we exemplary investigated foraging activities of breeding white storks in an agricultural landscape. Reflecting on the understanding that storks require short vegetation to access prey, we examined if good foraging conditions – early growth and post-harvest/mowing periods – are detectable using the points between local minima/maxima in NDVI profiles (half-maximum). We processed 1 year of Landsat imagery to identify half-maximum periods (HM: good prey access) and non-half-maximum periods (non-HM: poor prey access) on field-scale in croplands and grasslands. Additionally, we mapped used/unused fields and retrieved foraging duration/daily visitation rates from GPS tracks of the storks. We then explored habitat use, compared habitat use with habitat availability and tested temporal predictors distinguishing between HM/non-HM in habitat selection models. Examining habitat use, storks revisited croplands and grasslands significantly more often during HM than during non-HM, while foraging duration was only prolonged in croplands during HM. However, comparing habitat use with habitat availability, we observed that storks used croplands and grasslands in significantly higher proportions during HM than during non-HM. Additionally, we found that temporal information affected storks' habitat selection and improved model performance. Our findings emphasize that the half-maximum proxy enables to coarsely distinguish temporal resource variations in storks' foraging habitats, highlighting the potential of time series for characterizing behaviorally-relevant vegetation dynamics. Such information helps to create more species-centered landscape scenarios in habitat models, allowing to unravel effects of small-scale environmental changes on wildlife to ultimately guide conservation and management.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57379/1/Standfu%c3%9f_2-lije6vg0xrug2.pdf"/>
    <dc:creator>Taubenböck, Hannes</dc:creator>
    <dcterms:issued>2022-06</dcterms:issued>
    <dc:contributor>Geiß, Christian</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen