Understanding kernel ridge regression : Common behaviors from simple functions to density functionals

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Vu, Kevin
Snyder, John C.
Li, Li
Chen, Brandon F.
Khelif, Tarek
Müller, Klaus-Robert
Burke, Kieron
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
International Journal of Quantum Chemistry. Wiley-Blackwell. 2015, 115(16), pp. 1115-1128. ISSN 0020-7608. eISSN 1097-461X. Available under: doi: 10.1002/qua.24939
Zusammenfassung

Accurate approximations to density functionals have recently been obtained via machine learning (ML). By applying ML to a simple function of one variable without any random sampling, we extract the qualitative dependence of errors on hyperparameters. We find universal features of the behavior in extreme limits, including both very small and very large length scales, and the noise‐free limit. We show how such features arise in ML models of density functionals.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
machine learning, hyperparameters optimization, noise‐free curve, extreme behaviors, density functional theory
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690VU, Kevin, John C. SNYDER, Li LI, Matthias RUPP, Brandon F. CHEN, Tarek KHELIF, Klaus-Robert MÜLLER, Kieron BURKE, 2015. Understanding kernel ridge regression : Common behaviors from simple functions to density functionals. In: International Journal of Quantum Chemistry. Wiley-Blackwell. 2015, 115(16), pp. 1115-1128. ISSN 0020-7608. eISSN 1097-461X. Available under: doi: 10.1002/qua.24939
BibTex
@article{Vu2015Under-52126,
  year={2015},
  doi={10.1002/qua.24939},
  title={Understanding kernel ridge regression : Common behaviors from simple functions to density functionals},
  number={16},
  volume={115},
  issn={0020-7608},
  journal={International Journal of Quantum Chemistry},
  pages={1115--1128},
  author={Vu, Kevin and Snyder, John C. and Li, Li and Rupp, Matthias and Chen, Brandon F. and Khelif, Tarek and Müller, Klaus-Robert and Burke, Kieron}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52126">
    <dc:contributor>Li, Li</dc:contributor>
    <dcterms:abstract xml:lang="eng">Accurate approximations to density functionals have recently been obtained via machine learning (ML). By applying ML to a simple function of one variable without any random sampling, we extract the qualitative dependence of errors on hyperparameters. We find universal features of the behavior in extreme limits, including both very small and very large length scales, and the noise‐free limit. We show how such features arise in ML models of density functionals.</dcterms:abstract>
    <dc:contributor>Snyder, John C.</dc:contributor>
    <dc:creator>Li, Li</dc:creator>
    <dc:contributor>Müller, Klaus-Robert</dc:contributor>
    <dc:creator>Chen, Brandon F.</dc:creator>
    <dc:creator>Burke, Kieron</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:title>Understanding kernel ridge regression : Common behaviors from simple functions to density functionals</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T12:20:44Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Khelif, Tarek</dc:creator>
    <dc:contributor>Khelif, Tarek</dc:contributor>
    <dc:creator>Vu, Kevin</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Snyder, John C.</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52126"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Chen, Brandon F.</dc:contributor>
    <dc:contributor>Burke, Kieron</dc:contributor>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dc:contributor>Vu, Kevin</dc:contributor>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T12:20:44Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Müller, Klaus-Robert</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen