Publikation:

Understanding kernel ridge regression : Common behaviors from simple functions to density functionals

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Vu, Kevin
Snyder, John C.
Li, Li
Chen, Brandon F.
Khelif, Tarek
Müller, Klaus-Robert
Burke, Kieron

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Quantum Chemistry. Wiley-Blackwell. 2015, 115(16), pp. 1115-1128. ISSN 0020-7608. eISSN 1097-461X. Available under: doi: 10.1002/qua.24939

Zusammenfassung

Accurate approximations to density functionals have recently been obtained via machine learning (ML). By applying ML to a simple function of one variable without any random sampling, we extract the qualitative dependence of errors on hyperparameters. We find universal features of the behavior in extreme limits, including both very small and very large length scales, and the noise‐free limit. We show how such features arise in ML models of density functionals.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

machine learning, hyperparameters optimization, noise‐free curve, extreme behaviors, density functional theory

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690VU, Kevin, John C. SNYDER, Li LI, Matthias RUPP, Brandon F. CHEN, Tarek KHELIF, Klaus-Robert MÜLLER, Kieron BURKE, 2015. Understanding kernel ridge regression : Common behaviors from simple functions to density functionals. In: International Journal of Quantum Chemistry. Wiley-Blackwell. 2015, 115(16), pp. 1115-1128. ISSN 0020-7608. eISSN 1097-461X. Available under: doi: 10.1002/qua.24939
BibTex
@article{Vu2015Under-52126,
  year={2015},
  doi={10.1002/qua.24939},
  title={Understanding kernel ridge regression : Common behaviors from simple functions to density functionals},
  number={16},
  volume={115},
  issn={0020-7608},
  journal={International Journal of Quantum Chemistry},
  pages={1115--1128},
  author={Vu, Kevin and Snyder, John C. and Li, Li and Rupp, Matthias and Chen, Brandon F. and Khelif, Tarek and Müller, Klaus-Robert and Burke, Kieron}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52126">
    <dc:contributor>Li, Li</dc:contributor>
    <dcterms:abstract xml:lang="eng">Accurate approximations to density functionals have recently been obtained via machine learning (ML). By applying ML to a simple function of one variable without any random sampling, we extract the qualitative dependence of errors on hyperparameters. We find universal features of the behavior in extreme limits, including both very small and very large length scales, and the noise‐free limit. We show how such features arise in ML models of density functionals.</dcterms:abstract>
    <dc:contributor>Snyder, John C.</dc:contributor>
    <dc:creator>Li, Li</dc:creator>
    <dc:contributor>Müller, Klaus-Robert</dc:contributor>
    <dc:creator>Chen, Brandon F.</dc:creator>
    <dc:creator>Burke, Kieron</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:title>Understanding kernel ridge regression : Common behaviors from simple functions to density functionals</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T12:20:44Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Khelif, Tarek</dc:creator>
    <dc:contributor>Khelif, Tarek</dc:contributor>
    <dc:creator>Vu, Kevin</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Snyder, John C.</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52126"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Chen, Brandon F.</dc:contributor>
    <dc:contributor>Burke, Kieron</dc:contributor>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dc:contributor>Vu, Kevin</dc:contributor>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T12:20:44Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Müller, Klaus-Robert</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen