L10 -ordered (Fe100−xCrx)Pt thin films : Phase formation, morphology, and spin structure

Loading...
Thumbnail Image
Date
2020
Authors
Schmidt, Nataliia Y.
Hintermayr, Julian
Luo, Chen
Ryll, Hanjo
Radu, Florin
Szunyogh, László
Albrecht, Manfred
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Physical Review B ; 102 (2020), 21. - 214436. - American Physical Society (APS). - ISSN 2469-9950. - eISSN 2469-9969
Abstract
Chemically ordered L10 (Fe100−xCrx)Pt thin films were expitaxially grown on MgO(001) substrates by magnetron sputter-deposition at 770∘C. In this sample series, Fe was continuously substituted by Cr over the full composition range. The lattice parameter in the [001] growth direction steadily increases from L10-FePt toward L10-CrPt, confirming the incorporation of Cr in the lattice occupying Fe sites. With the observed high degree of chemical ordering and (001) orientation, strong perpendicular magnetic anisotropy is associated, which persists up to a Cr content of x=20 at. %. Similarly, the coercive field in the easy-axis direction is strongly reduced, which is, however, further attributed to a strong alteration of the film morphology with Cr substitution. The latter changes from a well-separated island microstructure to a more continuous film morphology. In the dilute alloy with low Cr content, isolated Cr magnetic moments couple antiferromagnetically to the ferromagnetic Fe matrix. In this case, all Cr moments are aligned parallel, thus forming a ferrimagnetic FeCrPt system. With increasing Cr concentration, nearest-neighbor Cr-Cr pairs start to appear, thereby increasing magnetic frustration and disorder, which lead to canting of neighboring magnetic moments, as revealed by atomistic spin-model simulations with model parameters based on first principles. At higher Cr concentrations, a frustrated ferrimagnetic order is established. With Cr substitution of up to 20 at. %, no pronounced change in Curie temperature, which is in the range of 700 K, was noticed. But with further addition the Curie temperature drops down substantially even down to room temperature at 47 at. % Cr. Furthermore, x-ray magnetic circular dichroism studies on dilute alloys containing up to 20 at. % of Cr revealed similar spin moments for Fe and Cr in the range between 2.1–2.5 μB but rather large orbital moments of up to 0.50 ±0.10μB for Cr. These results were also compared to ab initio calculations.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SCHMIDT, Nataliia Y., Ritwik MONDAL, Andreas DONGES, Julian HINTERMAYR, Chen LUO, Hanjo RYLL, Florin RADU, László SZUNYOGH, Ulrich NOWAK, Manfred ALBRECHT, 2020. L10 -ordered (Fe100−xCrx)Pt thin films : Phase formation, morphology, and spin structure. In: Physical Review B. American Physical Society (APS). 102(21), 214436. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.102.214436
BibTex
@article{Schmidt2020order-52384,
  year={2020},
  doi={10.1103/PhysRevB.102.214436},
  title={L1<sub>0</sub> -ordered (Fe<sub>100−x</sub>Cr<sub>x</sub>)Pt thin films : Phase formation, morphology, and spin structure},
  number={21},
  volume={102},
  issn={2469-9950},
  journal={Physical Review B},
  author={Schmidt, Nataliia Y. and Mondal, Ritwik and Donges, Andreas and Hintermayr, Julian and Luo, Chen and Ryll, Hanjo and Radu, Florin and Szunyogh, László and Nowak, Ulrich and Albrecht, Manfred},
  note={Article Number: 214436}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52384">
    <dc:contributor>Donges, Andreas</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Hintermayr, Julian</dc:contributor>
    <dc:contributor>Mondal, Ritwik</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Radu, Florin</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52384"/>
    <dc:creator>Schmidt, Nataliia Y.</dc:creator>
    <dc:contributor>Szunyogh, László</dc:contributor>
    <dc:creator>Szunyogh, László</dc:creator>
    <dc:creator>Ryll, Hanjo</dc:creator>
    <dcterms:title>L1&lt;sub&gt;0&lt;/sub&gt; -ordered (Fe&lt;sub&gt;100−x&lt;/sub&gt;Cr&lt;sub&gt;x&lt;/sub&gt;)Pt thin films : Phase formation, morphology, and spin structure</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Nowak, Ulrich</dc:creator>
    <dc:creator>Albrecht, Manfred</dc:creator>
    <dc:creator>Radu, Florin</dc:creator>
    <dc:creator>Donges, Andreas</dc:creator>
    <dc:contributor>Luo, Chen</dc:contributor>
    <dcterms:abstract xml:lang="eng">Chemically ordered L1&lt;sub&gt;0&lt;/sub&gt; (Fe&lt;sub&gt;100−x&lt;/sub&gt;Cr&lt;sub&gt;x&lt;/sub&gt;)Pt thin films were expitaxially grown on MgO(001) substrates by magnetron sputter-deposition at 770∘C. In this sample series, Fe was continuously substituted by Cr over the full composition range. The lattice parameter in the [001] growth direction steadily increases from L1&lt;sub&gt;0&lt;/sub&gt;-FePt toward L1&lt;sub&gt;0&lt;/sub&gt;-CrPt, confirming the incorporation of Cr in the lattice occupying Fe sites. With the observed high degree of chemical ordering and (001) orientation, strong perpendicular magnetic anisotropy is associated, which persists up to a Cr content of x=20 at. %. Similarly, the coercive field in the easy-axis direction is strongly reduced, which is, however, further attributed to a strong alteration of the film morphology with Cr substitution. The latter changes from a well-separated island microstructure to a more continuous film morphology. In the dilute alloy with low Cr content, isolated Cr magnetic moments couple antiferromagnetically to the ferromagnetic Fe matrix. In this case, all Cr moments are aligned parallel, thus forming a ferrimagnetic FeCrPt system. With increasing Cr concentration, nearest-neighbor Cr-Cr pairs start to appear, thereby increasing magnetic frustration and disorder, which lead to canting of neighboring magnetic moments, as revealed by atomistic spin-model simulations with model parameters based on first principles. At higher Cr concentrations, a frustrated ferrimagnetic order is established. With Cr substitution of up to 20 at. %, no pronounced change in Curie temperature, which is in the range of 700 K, was noticed. But with further addition the Curie temperature drops down substantially even down to room temperature at 47 at. % Cr. Furthermore, x-ray magnetic circular dichroism studies on dilute alloys containing up to 20 at. % of Cr revealed similar spin moments for Fe and Cr in the range between 2.1–2.5 μB but rather large orbital moments of up to 0.50 ±0.10μB for Cr. These results were also compared to ab initio calculations.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Hintermayr, Julian</dc:creator>
    <dc:creator>Luo, Chen</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <dc:contributor>Albrecht, Manfred</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52384/3/Schmidt_2-lm9u2zgu5gr13.pdf"/>
    <dc:contributor>Schmidt, Nataliia Y.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52384/3/Schmidt_2-lm9u2zgu5gr13.pdf"/>
    <dc:contributor>Ryll, Hanjo</dc:contributor>
    <dc:creator>Mondal, Ritwik</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-13T15:04:16Z</dc:date>
    <dc:contributor>Nowak, Ulrich</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-13T15:04:16Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes