Peptidoglycan turnover and recycling in Gram-positive bacteria

No Thumbnail Available
Files
There are no files associated with this item.
Date
2011
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Applied Microbiology and Biotechnology ; 92 (2011), 1. - pp. 1-11. - Springer. - ISSN 0175-7598. - eISSN 1432-0614
Abstract
Bacterial cells are protected by an exoskeleton, the stabilizing and shape-maintaining cell wall, consisting of the complex macromolecule peptidoglycan. In view of its function, it could be assumed that the cell wall is a static structure. In truth, however, it is steadily broken down by peptidoglycan-cleaving enzymes during cell growth. In this process, named cell wall turnover, in one generation up to half of the preexisting peptidoglycan of a bacterial cell is released from the wall. This would result in a massive loss of cell material, if turnover products were not be taken up and recovered. Indeed, in the Gram-negative model organism Escherichia coli, peptidoglycan recovery has been recognized as a complex pathway, named cell wall recycling. It involves about a dozen dedicated recycling enzymes that convey cell wall turnover products to peptidoglycan synthesis or energy pathways. Whether Gram-positive bacteria also recover their cell wall is currently questioned. Given the much larger portion of peptidoglycan in the cell wall of Gram-positive bacteria, however, recovery of the wall material would provide an even greater benefit in these organisms compared to Gram-negatives. Consistently, in many Gram-positives, orthologs of recycling enzymes were identified, indicating that the cell wall may also be recycled in these organisms. This mini-review provides a compilation of information about cell wall turnover and recycling in Gram-positive bacteria during cell growth and division, including recent findings relating to muropeptide recovery in Bacillus subtilis and Clostridium acetobutylicum from our group. Furthermore, the impact of cell wall turnover and recycling on biotechnological processes is discussed.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690REITH, Jan, Christoph MAYER, 2011. Peptidoglycan turnover and recycling in Gram-positive bacteria. In: Applied Microbiology and Biotechnology. Springer. 92(1), pp. 1-11. ISSN 0175-7598. eISSN 1432-0614. Available under: doi: 10.1007/s00253-011-3486-x
BibTex
@article{Reith2011-10Pepti-50235,
  year={2011},
  doi={10.1007/s00253-011-3486-x},
  title={Peptidoglycan turnover and recycling in Gram-positive bacteria},
  number={1},
  volume={92},
  issn={0175-7598},
  journal={Applied Microbiology and Biotechnology},
  pages={1--11},
  author={Reith, Jan and Mayer, Christoph}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50235">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Peptidoglycan turnover and recycling in Gram-positive bacteria</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-14T12:22:06Z</dc:date>
    <dcterms:abstract xml:lang="eng">Bacterial cells are protected by an exoskeleton, the stabilizing and shape-maintaining cell wall, consisting of the complex macromolecule peptidoglycan. In view of its function, it could be assumed that the cell wall is a static structure. In truth, however, it is steadily broken down by peptidoglycan-cleaving enzymes during cell growth. In this process, named cell wall turnover, in one generation up to half of the preexisting peptidoglycan of a bacterial cell is released from the wall. This would result in a massive loss of cell material, if turnover products were not be taken up and recovered. Indeed, in the Gram-negative model organism Escherichia coli, peptidoglycan recovery has been recognized as a complex pathway, named cell wall recycling. It involves about a dozen dedicated recycling enzymes that convey cell wall turnover products to peptidoglycan synthesis or energy pathways. Whether Gram-positive bacteria also recover their cell wall is currently questioned. Given the much larger portion of peptidoglycan in the cell wall of Gram-positive bacteria, however, recovery of the wall material would provide an even greater benefit in these organisms compared to Gram-negatives. Consistently, in many Gram-positives, orthologs of recycling enzymes were identified, indicating that the cell wall may also be recycled in these organisms. This mini-review provides a compilation of information about cell wall turnover and recycling in Gram-positive bacteria during cell growth and division, including recent findings relating to muropeptide recovery in Bacillus subtilis and Clostridium acetobutylicum from our group. Furthermore, the impact of cell wall turnover and recycling on biotechnological processes is discussed.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Reith, Jan</dc:contributor>
    <dc:contributor>Mayer, Christoph</dc:contributor>
    <dc:creator>Mayer, Christoph</dc:creator>
    <dcterms:issued>2011-10</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-14T12:22:06Z</dcterms:available>
    <dc:creator>Reith, Jan</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50235"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes