Patch-based segmentation using expert priors : Application to hippocampus and ventricle segmentation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Quantitative magnetic resonance analysis often requires accurate, robust, and reliable automatic extraction of anatomical structures. Recently, template-warping methods incorporating a label fusion strategy have demonstrated high accuracy in segmenting cerebral structures. In this study, we propose a novel patch-based method using expert manual segmentations as priors to achieve this task. Inspired by recent work in image denoising, the proposed nonlocal patch-based label fusion produces accurate and robust segmentation. Validation with two different datasets is presented. In our experiments, the hippocampi of 80 healthy subjects and the lateral ventricles of 80 patients with Alzheimer's disease were segmented. The influence on segmentation accuracy of different parameters such as patch size and number of training subjects was also studied. A comparison with an appearance-based method and a template-based method was also carried out. The highest median kappa index values obtained with the proposed method were 0.884 for hippocampus segmentation and 0.959 for lateral ventricle segmentation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
COUPÉ, Pierrick, José V. MANJÓN, Vladimir FONOV, Jens C. PRUESSNER, Montserrat ROBLES, D. Louis COLLINS, 2011. Patch-based segmentation using expert priors : Application to hippocampus and ventricle segmentation. In: NeuroImage. 2011, 54(2), pp. 940-954. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2010.09.018BibTex
@article{Coupe2011-01Patch-38468, year={2011}, doi={10.1016/j.neuroimage.2010.09.018}, title={Patch-based segmentation using expert priors : Application to hippocampus and ventricle segmentation}, number={2}, volume={54}, issn={1053-8119}, journal={NeuroImage}, pages={940--954}, author={Coupé, Pierrick and Manjón, José V. and Fonov, Vladimir and Pruessner, Jens C. and Robles, Montserrat and Collins, D. Louis} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38468"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-11T09:37:41Z</dc:date> <dc:creator>Manjón, José V.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Pruessner, Jens C.</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Manjón, José V.</dc:contributor> <dc:contributor>Collins, D. Louis</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dcterms:title>Patch-based segmentation using expert priors : Application to hippocampus and ventricle segmentation</dcterms:title> <dc:contributor>Coupé, Pierrick</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dcterms:issued>2011-01</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38468"/> <dc:creator>Fonov, Vladimir</dc:creator> <dcterms:abstract xml:lang="eng">Quantitative magnetic resonance analysis often requires accurate, robust, and reliable automatic extraction of anatomical structures. Recently, template-warping methods incorporating a label fusion strategy have demonstrated high accuracy in segmenting cerebral structures. In this study, we propose a novel patch-based method using expert manual segmentations as priors to achieve this task. Inspired by recent work in image denoising, the proposed nonlocal patch-based label fusion produces accurate and robust segmentation. Validation with two different datasets is presented. In our experiments, the hippocampi of 80 healthy subjects and the lateral ventricles of 80 patients with Alzheimer's disease were segmented. The influence on segmentation accuracy of different parameters such as patch size and number of training subjects was also studied. A comparison with an appearance-based method and a template-based method was also carried out. The highest median kappa index values obtained with the proposed method were 0.884 for hippocampus segmentation and 0.959 for lateral ventricle segmentation.</dcterms:abstract> <dc:creator>Collins, D. Louis</dc:creator> <dc:creator>Pruessner, Jens C.</dc:creator> <dc:creator>Coupé, Pierrick</dc:creator> <dc:contributor>Fonov, Vladimir</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-11T09:37:41Z</dcterms:available> <dc:creator>Robles, Montserrat</dc:creator> <dc:contributor>Robles, Montserrat</dc:contributor> </rdf:Description> </rdf:RDF>