Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators
Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators
Lade...
Dateien
Datum
1999
Autor:innen
Inkmann, Joachim
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie; 1999/04
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Erschienen in
Zusammenfassung
This paper compares generalized method of moments (GMM) and simulated maximum likeli-hood (SML) approaches to the estimation of the panel probit model. Both techniques circum-vent multiple integration of joint density functions without the need to restrict the error term variance-covariance matrix of the latent normal regression model. Particular attention is paid to a three-stage GMM estimator based on nonparametric estimation of the optimal instru-ments for given conditional moment functions. Monte Carlo experiments are carried out which focus on the small sample consequences of misspecification of the error term variance-covariance matrix. The correctly specified experiment reveals the asymptotic efficiency ad-vantages of SML. The GMM estimators outperform SML in the presence of misspecification in terms of multiplicative heteroskedasticity. This holds in particular for the three-stage GMM estimator. Allowing for heteroskedasticity over time increases the robustness with respect to misspecification in terms of multiplicative heteroskedasticity. An application to the product innovation activities of German manufacturing firms is presented.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
panel probit model,heteroskedasticity,conditional moment restrictions,optimal instruments,k-nearest neighbor estimation,GHK simulator
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
INKMANN, Joachim, 1999. Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML EstimatorsBibTex
@techreport{Inkmann1999Missp-11931, year={1999}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators}, number={1999/04}, author={Inkmann, Joachim} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/11931"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:41:11Z</dcterms:available> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/11931"/> <dcterms:title>Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:format>application/pdf</dc:format> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11931/3/315_1.pdf"/> <dc:creator>Inkmann, Joachim</dc:creator> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11931/3/315_1.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>1999</dcterms:issued> <dcterms:abstract xml:lang="eng">This paper compares generalized method of moments (GMM) and simulated maximum likeli-hood (SML) approaches to the estimation of the panel probit model. Both techniques circum-vent multiple integration of joint density functions without the need to restrict the error term variance-covariance matrix of the latent normal regression model. Particular attention is paid to a three-stage GMM estimator based on nonparametric estimation of the optimal instru-ments for given conditional moment functions. Monte Carlo experiments are carried out which focus on the small sample consequences of misspecification of the error term variance-covariance matrix. The correctly specified experiment reveals the asymptotic efficiency ad-vantages of SML. The GMM estimators outperform SML in the presence of misspecification in terms of multiplicative heteroskedasticity. This holds in particular for the three-stage GMM estimator. Allowing for heteroskedasticity over time increases the robustness with respect to misspecification in terms of multiplicative heteroskedasticity. An application to the product innovation activities of German manufacturing firms is presented.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:contributor>Inkmann, Joachim</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:41:11Z</dc:date> </rdf:Description> </rdf:RDF>