Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators

Lade...
Vorschaubild
Dateien
315_1.pdf
315_1.pdfGröße: 161.17 KBDownloads: 623
Datum
1999
Autor:innen
Inkmann, Joachim
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung

This paper compares generalized method of moments (GMM) and simulated maximum likeli-hood (SML) approaches to the estimation of the panel probit model. Both techniques circum-vent multiple integration of joint density functions without the need to restrict the error term variance-covariance matrix of the latent normal regression model. Particular attention is paid to a three-stage GMM estimator based on nonparametric estimation of the optimal instru-ments for given conditional moment functions. Monte Carlo experiments are carried out which focus on the small sample consequences of misspecification of the error term variance-covariance matrix. The correctly specified experiment reveals the asymptotic efficiency ad-vantages of SML. The GMM estimators outperform SML in the presence of misspecification in terms of multiplicative heteroskedasticity. This holds in particular for the three-stage GMM estimator. Allowing for heteroskedasticity over time increases the robustness with respect to misspecification in terms of multiplicative heteroskedasticity. An application to the product innovation activities of German manufacturing firms is presented.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
panel probit model, heteroskedasticity, conditional moment restrictions, optimal instruments, k-nearest neighbor estimation, GHK simulator
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690INKMANN, Joachim, 1999. Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators
BibTex
@techreport{Inkmann1999Missp-11931,
  year={1999},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators},
  number={1999/04},
  author={Inkmann, Joachim}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/11931">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:41:11Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/11931"/>
    <dcterms:title>Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11931/3/315_1.pdf"/>
    <dc:creator>Inkmann, Joachim</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11931/3/315_1.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>1999</dcterms:issued>
    <dcterms:abstract xml:lang="eng">This paper compares generalized method of moments (GMM) and simulated maximum likeli-hood (SML) approaches to the estimation of the panel probit model. Both techniques circum-vent multiple integration of joint density functions without the need to restrict the error term variance-covariance matrix of the latent normal regression model. Particular attention is paid to a three-stage GMM estimator based on nonparametric estimation of the optimal instru-ments for given conditional moment functions. Monte Carlo experiments are carried out which focus on the small sample consequences of misspecification of the error term variance-covariance matrix. The correctly specified experiment reveals the asymptotic efficiency ad-vantages of SML. The GMM estimators outperform SML in the presence of misspecification in terms of multiplicative heteroskedasticity. This holds in particular for the three-stage GMM estimator. Allowing for heteroskedasticity over time increases the robustness with respect to misspecification in terms of multiplicative heteroskedasticity. An application to the product innovation activities of German manufacturing firms is presented.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Inkmann, Joachim</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:41:11Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen