Publikation:

Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators

Lade...
Vorschaubild

Dateien

315_1.pdf
315_1.pdfGröße: 161.17 KBDownloads: 672

Datum

1999

Autor:innen

Inkmann, Joachim

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This paper compares generalized method of moments (GMM) and simulated maximum likeli-hood (SML) approaches to the estimation of the panel probit model. Both techniques circum-vent multiple integration of joint density functions without the need to restrict the error term variance-covariance matrix of the latent normal regression model. Particular attention is paid to a three-stage GMM estimator based on nonparametric estimation of the optimal instru-ments for given conditional moment functions. Monte Carlo experiments are carried out which focus on the small sample consequences of misspecification of the error term variance-covariance matrix. The correctly specified experiment reveals the asymptotic efficiency ad-vantages of SML. The GMM estimators outperform SML in the presence of misspecification in terms of multiplicative heteroskedasticity. This holds in particular for the three-stage GMM estimator. Allowing for heteroskedasticity over time increases the robustness with respect to misspecification in terms of multiplicative heteroskedasticity. An application to the product innovation activities of German manufacturing firms is presented.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

panel probit model, heteroskedasticity, conditional moment restrictions, optimal instruments, k-nearest neighbor estimation, GHK simulator

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690INKMANN, Joachim, 1999. Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators
BibTex
@techreport{Inkmann1999Missp-11931,
  year={1999},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators},
  number={1999/04},
  author={Inkmann, Joachim}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/11931">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:41:11Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/11931"/>
    <dcterms:title>Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11931/3/315_1.pdf"/>
    <dc:creator>Inkmann, Joachim</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11931/3/315_1.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>1999</dcterms:issued>
    <dcterms:abstract xml:lang="eng">This paper compares generalized method of moments (GMM) and simulated maximum likeli-hood (SML) approaches to the estimation of the panel probit model. Both techniques circum-vent multiple integration of joint density functions without the need to restrict the error term variance-covariance matrix of the latent normal regression model. Particular attention is paid to a three-stage GMM estimator based on nonparametric estimation of the optimal instru-ments for given conditional moment functions. Monte Carlo experiments are carried out which focus on the small sample consequences of misspecification of the error term variance-covariance matrix. The correctly specified experiment reveals the asymptotic efficiency ad-vantages of SML. The GMM estimators outperform SML in the presence of misspecification in terms of multiplicative heteroskedasticity. This holds in particular for the three-stage GMM estimator. Allowing for heteroskedasticity over time increases the robustness with respect to misspecification in terms of multiplicative heteroskedasticity. An application to the product innovation activities of German manufacturing firms is presented.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Inkmann, Joachim</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:41:11Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen