Algorithmic Debugging for Intelligent Tutoring : How to use multiple models and improve diagnosis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Intelligent tutoring systems (ITSs) are capable to intelligently diagnose learners’ problem solving behaviour only in limited and well-defined contexts. Learners are expected to solve problems by closely following a single prescribed problem solving strategy, usually in a fixed- order, step by step manner. Learners failing to match expectations are often met with incorrect diagnoses even when human teachers would judge their actions admissible. To address the issue, we extend our previous work on cognitive diagnosis, which is based on logic programming and meta-level techniques. Our novel use of Shapiro’s algorithmic debugging now analyses learner input independently against multiple models. Learners can now follow one of many possible algorithms to solve a given problem, and they can expect the tutoring system to respond with improved diagnostic quality, at negligible computational costs.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZINN, Claus, 2013. Algorithmic Debugging for Intelligent Tutoring : How to use multiple models and improve diagnosis. In: TIMM, Ingo J., ed., Matthias THIMM, ed.. KI 2013: Advances in Artificial Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 272-283. Lecture Notes in Computer Science. 8077. ISBN 978-3-642-40941-7. Available under: doi: 10.1007/978-3-642-40942-4_24BibTex
@inproceedings{Zinn2013Algor-24568, year={2013}, doi={10.1007/978-3-642-40942-4_24}, title={Algorithmic Debugging for Intelligent Tutoring : How to use multiple models and improve diagnosis}, number={8077}, isbn={978-3-642-40941-7}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={KI 2013: Advances in Artificial Intelligence}, pages={272--283}, editor={Timm, Ingo J. and Thimm, Matthias}, author={Zinn, Claus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24568"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24568"/> <dc:creator>Zinn, Claus</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24568/2/Zinn_245687.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2013</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Zinn, Claus</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-16T06:28:52Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-16T06:28:52Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24568/2/Zinn_245687.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:bibliographicCitation>KI 2013: Advances in Artificial Intelligence : 36th Annual German Conference on AI, Koblenz, Germany, September 16-20, 2013 ; Proceedings / edited by Ingo J. Timm, Matthias Thimm. - Berlin : Springer, 2013. - S. 272-283. - (Lecture notes in computer science ; 8077). - ISBN 978-364-24094-2-4</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dcterms:title>Algorithmic Debugging for Intelligent Tutoring : How to use multiple models and improve diagnosis</dcterms:title> <dcterms:abstract xml:lang="eng">Intelligent tutoring systems (ITSs) are capable to intelligently diagnose learners’ problem solving behaviour only in limited and well-defined contexts. Learners are expected to solve problems by closely following a single prescribed problem solving strategy, usually in a fixed- order, step by step manner. Learners failing to match expectations are often met with incorrect diagnoses even when human teachers would judge their actions admissible. To address the issue, we extend our previous work on cognitive diagnosis, which is based on logic programming and meta-level techniques. Our novel use of Shapiro’s algorithmic debugging now analyses learner input independently against multiple models. Learners can now follow one of many possible algorithms to solve a given problem, and they can expect the tutoring system to respond with improved diagnostic quality, at negligible computational costs.</dcterms:abstract> </rdf:Description> </rdf:RDF>