Emptiness Problems for Integer Circuits
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study the computational complexity of emptiness problems for circuits over sets of natural numbers with the operations union, intersection, complement, addition, and multiplication. For most settings of allowed operations we precisely characterize the complexity in terms of completeness for classes like NL, NP, and PSPACE. The case where intersection, addition, and multiplication is allowed turns out to be equivalent to the complement of polynomial identity testing (PIT). Our results imply the following improvements and insights on problems studied in earlier papers. We improve the bounds for the membership problem MC(∪;∩;‾;+;x) studied by McKenzie and Wagner 2007 and for the equivalence problem EQ(∪;∩;‾;+;x) studied by Gla_er et al. 2010. Moreover, it turns out that the following problems are equivalent to PIT, which shows that the challenge to improve their bounds is just a reformulation of a well-studied, major open problem in algebraic computing complexity:
- membership problem MC(∩;+;x) studied by McKenzie and Wagner 2007
- integer membership problems MCℤ (+;x), MCℤ (∩;+;x) studied by Travers 2006
- equivalence problem EQ(+;x) studied by Glaßer et al. 2010
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARTH, Dominik, Moritz BECK, Titus DOSE, Christian GLASSER, Larissa MICHLER, Marc TECHNAU, 2017. Emptiness Problems for Integer Circuits. In: Electronic Colloquium on Computational Complexity. 2017(12), TR17-012. ISSN 1433-8092BibTex
@article{Barth2017Empti-44630, year={2017}, title={Emptiness Problems for Integer Circuits}, url={https://eccc.weizmann.ac.il/report/2017/012/}, number={12}, issn={1433-8092}, journal={Electronic Colloquium on Computational Complexity}, author={Barth, Dominik and Beck, Moritz and Dose, Titus and Glaßer, Christian and Michler, Larissa and Technau, Marc}, note={Article Number: TR17-012} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44630"> <dc:contributor>Beck, Moritz</dc:contributor> <dc:contributor>Barth, Dominik</dc:contributor> <dc:language>eng</dc:language> <dcterms:title>Emptiness Problems for Integer Circuits</dcterms:title> <dc:contributor>Dose, Titus</dc:contributor> <dc:creator>Barth, Dominik</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Technau, Marc</dc:contributor> <dc:contributor>Glaßer, Christian</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-21T10:40:42Z</dc:date> <dc:creator>Beck, Moritz</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44630"/> <dc:creator>Dose, Titus</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-21T10:40:42Z</dcterms:available> <dc:contributor>Michler, Larissa</dc:contributor> <dc:creator>Michler, Larissa</dc:creator> <dcterms:issued>2017</dcterms:issued> <dcterms:abstract xml:lang="eng">We study the computational complexity of emptiness problems for circuits over sets of natural numbers with the operations union, intersection, complement, addition, and multiplication. For most settings of allowed operations we precisely characterize the complexity in terms of completeness for classes like NL, NP, and PSPACE. The case where intersection, addition, and multiplication is allowed turns out to be equivalent to the complement of polynomial identity testing (PIT). Our results imply the following improvements and insights on problems studied in earlier papers. We improve the bounds for the membership problem MC(∪;∩;‾;+;x) studied by McKenzie and Wagner 2007 and for the equivalence problem EQ(∪;∩;‾;+;x) studied by Gla_er et al. 2010. Moreover, it turns out that the following problems are equivalent to PIT, which shows that the challenge to improve their bounds is just a reformulation of a well-studied, major open problem in algebraic computing complexity:<br />- membership problem MC(∩;+;x) studied by McKenzie and Wagner 2007<br />- integer membership problems MC<sub>ℤ</sub> (+;x), MC<sub>ℤ</sub> (∩;+;x) studied by Travers 2006<br />- equivalence problem EQ(+;x) studied by Glaßer et al. 2010</dcterms:abstract> <dc:creator>Glaßer, Christian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Technau, Marc</dc:creator> </rdf:Description> </rdf:RDF>