Real Closed Exponential Fields

Lade...
Vorschaubild
Dateien
daquino_212455.pdf
daquino_212455.pdfGröße: 290.1 KBDownloads: 161
Datum
2011
Autor:innen
D'Aquino, Paola
Knight, Julia F.
Lange, Karen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung

In an extended abstract Ressayre considered real closed exponential fields and integer parts that respect the exponential function. He outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre's construction, which becomes canonical once we fix the real closed exponential field, a residue field section, and a well ordering of the field. The procedure is constructible over these objects; each step looks effective, but may require many steps. We produce an example of an exponential field $R$ with a residue field $k$ and a well ordering $<$ such that $D^c(R)$ is low and $k$ and $<$ are $\Delta^0_3$, and Ressayre's construction cannot be completed in $L_{\omega_1^{CK}}$.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690D'AQUINO, Paola, Julia F. KNIGHT, Salma KUHLMANN, Karen LANGE, 2011. Real Closed Exponential Fields
BibTex
@unpublished{DAquino2011Close-21245,
  year={2011},
  title={Real Closed Exponential Fields},
  author={D'Aquino, Paola and Knight, Julia F. and Kuhlmann, Salma and Lange, Karen},
  note={Also publ. in: Fundamenta Mathematicae ; 219 (2012), 2. - S. 163-190}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21245">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Knight, Julia F.</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Lange, Karen</dc:contributor>
    <dc:creator>Lange, Karen</dc:creator>
    <dcterms:title>Real Closed Exponential Fields</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>D'Aquino, Paola</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21245"/>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21245/1/daquino_212455.pdf"/>
    <dc:contributor>D'Aquino, Paola</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dcterms:abstract xml:lang="eng">In an extended abstract Ressayre considered real closed exponential fields and integer parts that respect the exponential function. He outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre's construction, which becomes canonical once we fix the real closed exponential field, a residue field section, and a well ordering of the field. The procedure is constructible over these objects; each step looks effective, but may require many steps. We produce an example of an exponential field $R$ with a residue field $k$ and a well ordering $&lt;$ such that $D^c(R)$ is low and $k$ and $&lt;$ are $\Delta^0_3$, and Ressayre's construction cannot be completed in $L_{\omega_1^{CK}}$.</dcterms:abstract>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-04T09:55:24Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Knight, Julia F.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21245/1/daquino_212455.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-04T09:55:24Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Also publ. in: Fundamenta Mathematicae ; 219 (2012), 2. - S. 163-190
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen