Real Closed Exponential Fields
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In an extended abstract Ressayre considered real closed exponential fields and integer parts that respect the exponential function. He outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre's construction, which becomes canonical once we fix the real closed exponential field, a residue field section, and a well ordering of the field. The procedure is constructible over these objects; each step looks effective, but may require many steps. We produce an example of an exponential field $R$ with a residue field $k$ and a well ordering $<$ such that $D^c(R)$ is low and $k$ and $<$ are $\Delta^0_3$, and Ressayre's construction cannot be completed in $L_{\omega_1^{CK}}$.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
D'AQUINO, Paola, Julia F. KNIGHT, Salma KUHLMANN, Karen LANGE, 2011. Real Closed Exponential FieldsBibTex
@unpublished{DAquino2011Close-21245, year={2011}, title={Real Closed Exponential Fields}, author={D'Aquino, Paola and Knight, Julia F. and Kuhlmann, Salma and Lange, Karen}, note={Also publ. in: Fundamenta Mathematicae ; 219 (2012), 2. - S. 163-190} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21245"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Knight, Julia F.</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Lange, Karen</dc:contributor> <dc:creator>Lange, Karen</dc:creator> <dcterms:title>Real Closed Exponential Fields</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>D'Aquino, Paola</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21245"/> <dcterms:issued>2011</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21245/1/daquino_212455.pdf"/> <dc:contributor>D'Aquino, Paola</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Kuhlmann, Salma</dc:creator> <dcterms:abstract xml:lang="eng">In an extended abstract Ressayre considered real closed exponential fields and integer parts that respect the exponential function. He outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre's construction, which becomes canonical once we fix the real closed exponential field, a residue field section, and a well ordering of the field. The procedure is constructible over these objects; each step looks effective, but may require many steps. We produce an example of an exponential field $R$ with a residue field $k$ and a well ordering $<$ such that $D^c(R)$ is low and $k$ and $<$ are $\Delta^0_3$, and Ressayre's construction cannot be completed in $L_{\omega_1^{CK}}$.</dcterms:abstract> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-04T09:55:24Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Knight, Julia F.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21245/1/daquino_212455.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-04T09:55:24Z</dc:date> </rdf:Description> </rdf:RDF>