Publikation:

Real Closed Exponential Fields

Lade...
Vorschaubild

Dateien

daquino_212455.pdf
daquino_212455.pdfGröße: 290.1 KBDownloads: 181

Datum

2011

Autor:innen

D'Aquino, Paola
Knight, Julia F.
Lange, Karen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In an extended abstract Ressayre considered real closed exponential fields and integer parts that respect the exponential function. He outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre's construction, which becomes canonical once we fix the real closed exponential field, a residue field section, and a well ordering of the field. The procedure is constructible over these objects; each step looks effective, but may require many steps. We produce an example of an exponential field $R$ with a residue field $k$ and a well ordering $<$ such that $D^c(R)$ is low and $k$ and $<$ are $\Delta^0_3$, and Ressayre's construction cannot be completed in $L_{\omega_1^{CK}}$.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690D'AQUINO, Paola, Julia F. KNIGHT, Salma KUHLMANN, Karen LANGE, 2011. Real Closed Exponential Fields
BibTex
@unpublished{DAquino2011Close-21245,
  year={2011},
  title={Real Closed Exponential Fields},
  author={D'Aquino, Paola and Knight, Julia F. and Kuhlmann, Salma and Lange, Karen},
  note={Also publ. in: Fundamenta Mathematicae ; 219 (2012), 2. - S. 163-190}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21245">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Knight, Julia F.</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Lange, Karen</dc:contributor>
    <dc:creator>Lange, Karen</dc:creator>
    <dcterms:title>Real Closed Exponential Fields</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>D'Aquino, Paola</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21245"/>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21245/1/daquino_212455.pdf"/>
    <dc:contributor>D'Aquino, Paola</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dcterms:abstract xml:lang="eng">In an extended abstract Ressayre considered real closed exponential fields and integer parts that respect the exponential function. He outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre's construction, which becomes canonical once we fix the real closed exponential field, a residue field section, and a well ordering of the field. The procedure is constructible over these objects; each step looks effective, but may require many steps. We produce an example of an exponential field $R$ with a residue field $k$ and a well ordering $&lt;$ such that $D^c(R)$ is low and $k$ and $&lt;$ are $\Delta^0_3$, and Ressayre's construction cannot be completed in $L_{\omega_1^{CK}}$.</dcterms:abstract>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-04T09:55:24Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Knight, Julia F.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21245/1/daquino_212455.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-04T09:55:24Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Also publ. in: Fundamenta Mathematicae ; 219 (2012), 2. - S. 163-190
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen