Publikation: On Upward-Planar L-Drawings of Graphs
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal segment ending at the head of e. Distinct edges may overlap, but not cross. Recently, upward-planar L-drawings have been studied for st-graphs, i.e., planar DAGs with a single source s and a single sink t containing an edge directed from s to t. It is known that a plane st-graph, i.e., an embedded st-graph in which the edge (s,t) is incident to the outer face, admits an upward-planar L-drawing if and only if it admits a bitonic st-ordering, which can be tested in linear time. We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing, which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii) when no restriction is given on the embedding, but the DAG is biconnected and series-parallel.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ANGELINI, Patrizio, Steven CHAPLICK, Sabine CORNELSEN, Giordano DA LOZZO, 2022. On Upward-Planar L-Drawings of Graphs. 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Vienna, Austria, 22. Aug. 2022 - 26. Aug. 2022. In: SZEIDER, Stefan, ed., Robert GANIAN, ed., Alexandra SILVA, ed.. 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Wadern: Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik, 2022, pp. 10:1-10:15. Leibniz International Proceedings in Informatics (LIPIcs). 241. eISSN 1868-8969. ISBN 978-3-95977-256-3. Available under: doi: 10.4230/LIPIcs.MFCS.2022.10BibTex
@inproceedings{Angelini2022Upwar-68525, year={2022}, doi={10.4230/LIPIcs.MFCS.2022.10}, title={On Upward-Planar L-Drawings of Graphs}, number={241}, isbn={978-3-95977-256-3}, publisher={Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik}, address={Wadern}, series={Leibniz International Proceedings in Informatics (LIPIcs)}, booktitle={47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)}, pages={10:1--10:15}, editor={Szeider, Stefan and Ganian, Robert and Silva, Alexandra}, author={Angelini, Patrizio and Chaplick, Steven and Cornelsen, Sabine and Da Lozzo, Giordano} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68525"> <dcterms:title>On Upward-Planar L-Drawings of Graphs</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68525/1/Angelini_2-m3r3hitv0ery2.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-30T09:49:50Z</dc:date> <dc:contributor>Angelini, Patrizio</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68525/1/Angelini_2-m3r3hitv0ery2.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-30T09:49:50Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Da Lozzo, Giordano</dc:contributor> <dc:creator>Cornelsen, Sabine</dc:creator> <dc:contributor>Cornelsen, Sabine</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Chaplick, Steven</dc:creator> <dc:creator>Da Lozzo, Giordano</dc:creator> <dc:creator>Angelini, Patrizio</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68525"/> <dcterms:abstract>In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal segment ending at the head of e. Distinct edges may overlap, but not cross. Recently, upward-planar L-drawings have been studied for st-graphs, i.e., planar DAGs with a single source s and a single sink t containing an edge directed from s to t. It is known that a plane st-graph, i.e., an embedded st-graph in which the edge (s,t) is incident to the outer face, admits an upward-planar L-drawing if and only if it admits a bitonic st-ordering, which can be tested in linear time. We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing, which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii) when no restriction is given on the embedding, but the DAG is biconnected and series-parallel.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Chaplick, Steven</dc:contributor> <dcterms:issued>2022</dcterms:issued> </rdf:Description> </rdf:RDF>