Publikation:

On Upward-Planar L-Drawings of Graphs

Lade...
Vorschaubild

Dateien

Angelini_2-m3r3hitv0ery2.pdf
Angelini_2-m3r3hitv0ery2.pdfGröße: 738.33 KBDownloads: 16

Datum

2022

Autor:innen

Angelini, Patrizio
Chaplick, Steven
Da Lozzo, Giordano

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

SZEIDER, Stefan, ed., Robert GANIAN, ed., Alexandra SILVA, ed.. 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Wadern: Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik, 2022, pp. 10:1-10:15. Leibniz International Proceedings in Informatics (LIPIcs). 241. eISSN 1868-8969. ISBN 978-3-95977-256-3. Available under: doi: 10.4230/LIPIcs.MFCS.2022.10

Zusammenfassung

In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal segment ending at the head of e. Distinct edges may overlap, but not cross. Recently, upward-planar L-drawings have been studied for st-graphs, i.e., planar DAGs with a single source s and a single sink t containing an edge directed from s to t. It is known that a plane st-graph, i.e., an embedded st-graph in which the edge (s,t) is incident to the outer face, admits an upward-planar L-drawing if and only if it admits a bitonic st-ordering, which can be tested in linear time. We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing, which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii) when no restriction is given on the embedding, but the DAG is biconnected and series-parallel.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022), 22. Aug. 2022 - 26. Aug. 2022, Vienna, Austria
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ANGELINI, Patrizio, Steven CHAPLICK, Sabine CORNELSEN, Giordano DA LOZZO, 2022. On Upward-Planar L-Drawings of Graphs. 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Vienna, Austria, 22. Aug. 2022 - 26. Aug. 2022. In: SZEIDER, Stefan, ed., Robert GANIAN, ed., Alexandra SILVA, ed.. 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Wadern: Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik, 2022, pp. 10:1-10:15. Leibniz International Proceedings in Informatics (LIPIcs). 241. eISSN 1868-8969. ISBN 978-3-95977-256-3. Available under: doi: 10.4230/LIPIcs.MFCS.2022.10
BibTex
@inproceedings{Angelini2022Upwar-68525,
  year={2022},
  doi={10.4230/LIPIcs.MFCS.2022.10},
  title={On Upward-Planar L-Drawings of Graphs},
  number={241},
  isbn={978-3-95977-256-3},
  publisher={Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik},
  address={Wadern},
  series={Leibniz International Proceedings in Informatics (LIPIcs)},
  booktitle={47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages={10:1--10:15},
  editor={Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  author={Angelini, Patrizio and Chaplick, Steven and Cornelsen, Sabine and Da Lozzo, Giordano}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68525">
    <dcterms:title>On Upward-Planar L-Drawings of Graphs</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68525/1/Angelini_2-m3r3hitv0ery2.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-30T09:49:50Z</dc:date>
    <dc:contributor>Angelini, Patrizio</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68525/1/Angelini_2-m3r3hitv0ery2.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-30T09:49:50Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Da Lozzo, Giordano</dc:contributor>
    <dc:creator>Cornelsen, Sabine</dc:creator>
    <dc:contributor>Cornelsen, Sabine</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Chaplick, Steven</dc:creator>
    <dc:creator>Da Lozzo, Giordano</dc:creator>
    <dc:creator>Angelini, Patrizio</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68525"/>
    <dcterms:abstract>In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal segment ending at the head of e. Distinct edges may overlap, but not cross. Recently, upward-planar L-drawings have been studied for st-graphs, i.e., planar DAGs with a single source s and a single sink t containing an edge directed from s to t. It is known that a plane st-graph, i.e., an embedded st-graph in which the edge (s,t) is incident to the outer face, admits an upward-planar L-drawing if and only if it admits a bitonic st-ordering, which can be tested in linear time. We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing, which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii) when no restriction is given on the embedding, but the DAG is biconnected and series-parallel.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:contributor>Chaplick, Steven</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen