Learned Feature Generation for Molecules

Loading...
Thumbnail Image
Date
2018
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, proceedings / Duivesteijn, Wouter; Siebes, Arno; Ukkonen, Antti (ed.). - Cham : Springer, 2018. - (Lecture Notes in Computer Science ; 11191). - pp. 380-391. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-030-01767-5
Abstract
When classifying molecules for virtual screening, the molecular structure first needs to be converted into meaningful features, before a classifier can be trained. The most common methods use a static algorithm that has been created based on domain knowledge to perform this generation of features. We propose an approach where this conversion is learned by convolutional neural network finding features that are useful for teh task at hand based on the available data. Preliminary results indicate that our current approach can already come up with fetaures that perform similarly well as common methods. Since this approach does not jet use any chemiocal properties, results could be improved in future versions
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Convolutional neural networks; Feature generation; Molecular fetaures; Virtual screening
Conference
17th International Symposium, IDA 2018, Oct 24, 2018 - Oct 26, 2018, ’s-Hertogenbosch, The Netherlands
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690WINTER, Patrick, Christian BORGELT, Michael R. BERTHOLD, 2018. Learned Feature Generation for Molecules. 17th International Symposium, IDA 2018. ’s-Hertogenbosch, The Netherlands, Oct 24, 2018 - Oct 26, 2018. In: DUIVESTEIJN, Wouter, ed., Arno SIEBES, ed., Antti UKKONEN, ed.. Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, proceedings. Cham:Springer, pp. 380-391. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-01767-5. Available under: doi: 10.1007/978-3-030-01768-2_31
BibTex
@inproceedings{Winter2018-10-05Learn-44691,
  year={2018},
  doi={10.1007/978-3-030-01768-2_31},
  title={Learned Feature Generation for Molecules},
  number={11191},
  isbn={978-3-030-01767-5},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, proceedings},
  pages={380--391},
  editor={Duivesteijn, Wouter and Siebes, Arno and Ukkonen, Antti},
  author={Winter, Patrick and Borgelt, Christian and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44691">
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:abstract xml:lang="eng">When classifying molecules for virtual screening, the molecular structure first needs to be converted into meaningful features, before a classifier can be trained. The most common methods use a static algorithm that has been created based on domain knowledge to perform this generation of features. We propose an approach where this conversion is learned by convolutional neural network finding features that are useful for teh task at hand based on the available data. Preliminary results indicate that our current approach can already come up with fetaures that perform similarly well as common methods. Since this approach does not jet use any chemiocal properties, results could be improved in future versions</dcterms:abstract>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dc:contributor>Winter, Patrick</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T13:29:47Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44691"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44691/1/Winter_2-m7ofa8jpw2sa6.pdf"/>
    <dcterms:issued>2018-10-05</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T13:29:47Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44691/1/Winter_2-m7ofa8jpw2sa6.pdf"/>
    <dcterms:title>Learned Feature Generation for Molecules</dcterms:title>
    <dc:creator>Winter, Patrick</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed