Publikation: Learned Feature Generation for Molecules
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
When classifying molecules for virtual screening, the molecular structure first needs to be converted into meaningful features, before a classifier can be trained. The most common methods use a static algorithm that has been created based on domain knowledge to perform this generation of features. We propose an approach where this conversion is learned by convolutional neural network finding features that are useful for teh task at hand based on the available data. Preliminary results indicate that our current approach can already come up with fetaures that perform similarly well as common methods. Since this approach does not jet use any chemiocal properties, results could be improved in future versions
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WINTER, Patrick, Christian BORGELT, Michael R. BERTHOLD, 2018. Learned Feature Generation for Molecules. 17th International Symposium, IDA 2018. ’s-Hertogenbosch, The Netherlands, 24. Okt. 2018 - 26. Okt. 2018. In: DUIVESTEIJN, Wouter, ed., Arno SIEBES, ed., Antti UKKONEN, ed.. Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, proceedings. Cham: Springer, 2018, pp. 380-391. Lecture Notes in Computer Science. 11191. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-01767-5. Available under: doi: 10.1007/978-3-030-01768-2_31BibTex
@inproceedings{Winter2018-10-05Learn-44691, year={2018}, doi={10.1007/978-3-030-01768-2_31}, title={Learned Feature Generation for Molecules}, number={11191}, isbn={978-3-030-01767-5}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, proceedings}, pages={380--391}, editor={Duivesteijn, Wouter and Siebes, Arno and Ukkonen, Antti}, author={Winter, Patrick and Borgelt, Christian and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44691"> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:abstract xml:lang="eng">When classifying molecules for virtual screening, the molecular structure first needs to be converted into meaningful features, before a classifier can be trained. The most common methods use a static algorithm that has been created based on domain knowledge to perform this generation of features. We propose an approach where this conversion is learned by convolutional neural network finding features that are useful for teh task at hand based on the available data. Preliminary results indicate that our current approach can already come up with fetaures that perform similarly well as common methods. Since this approach does not jet use any chemiocal properties, results could be improved in future versions</dcterms:abstract> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Borgelt, Christian</dc:contributor> <dc:contributor>Winter, Patrick</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T13:29:47Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44691"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:creator>Borgelt, Christian</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44691/1/Winter_2-m7ofa8jpw2sa6.pdf"/> <dcterms:issued>2018-10-05</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T13:29:47Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44691/1/Winter_2-m7ofa8jpw2sa6.pdf"/> <dcterms:title>Learned Feature Generation for Molecules</dcterms:title> <dc:creator>Winter, Patrick</dc:creator> </rdf:Description> </rdf:RDF>