Channel flow of a tensorial shear-thinning Maxwell model : Lattice Boltzmann simulations

Lade...
Vorschaubild
Dateien
Papenkort_276948.pdf
Papenkort_276948.pdfGröße: 862.81 KBDownloads: 433
Datum
2014
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Nonlinear mechanical response of supercooled melts under applied stress, FOR 1394, P3
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
The Journal of Chemical Physics. 2014, 140(16), 164507. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.4872219
Zusammenfassung

We discuss pressure-driven channel flow for a model of shear-thinning glass-forming fluids, employing a modified lattice-Boltzmann (LB) simulation scheme. The model is motivated by a recent microscopic approach to the nonlinear rheology of colloidal suspensions and captures a nonvanishing dynamical yield stress and the appearance of normal-stress differences and a flow-induced pressure contribution. The standard LB algorithm is extended to deal with tensorial, nonlinear constitutive equations of this class. The new LB scheme is tested in 2D pressure-driven channel flow and reproduces the analytical steady-state solution. The transient dynamics after startup and removal of the pressure gradient reproduce a finite stopping time for the cessation flow of yield-stress fluids in agreement with previous analytical estimates.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
nichtlineare Rheologie, Lattice-Boltzmann-Simulationen
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690PAPENKORT, Simon, Thomas VOIGTMANN, 2014. Channel flow of a tensorial shear-thinning Maxwell model : Lattice Boltzmann simulations. In: The Journal of Chemical Physics. 2014, 140(16), 164507. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.4872219
BibTex
@article{Papenkort2014-04-28Chann-27694,
  year={2014},
  doi={10.1063/1.4872219},
  title={Channel flow of a tensorial shear-thinning Maxwell model : Lattice Boltzmann simulations},
  number={16},
  volume={140},
  issn={0021-9606},
  journal={The Journal of Chemical Physics},
  author={Papenkort, Simon and Voigtmann, Thomas},
  note={Article Number: 164507}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27694">
    <dcterms:issued>2014-04-28</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Papenkort, Simon</dc:creator>
    <dc:contributor>Voigtmann, Thomas</dc:contributor>
    <dc:contributor>Papenkort, Simon</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-05T09:59:05Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27694"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:bibliographicCitation>The Journal of Chemical Physics ; 140 (2014), 16. - 164507</dcterms:bibliographicCitation>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27694/1/Papenkort_276948.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Voigtmann, Thomas</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27694/1/Papenkort_276948.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-05T09:59:05Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We discuss pressure-driven channel flow for a model of shear-thinning glass-forming fluids, employing a modified lattice-Boltzmann (LB) simulation scheme. The model is motivated by a recent microscopic approach to the nonlinear rheology of colloidal suspensions and captures a nonvanishing dynamical yield stress and the appearance of normal-stress differences and a flow-induced pressure contribution. The standard LB algorithm is extended to deal with tensorial, nonlinear constitutive equations of this class. The new LB scheme is tested in 2D pressure-driven channel flow and reproduces the analytical steady-state solution. The transient dynamics after startup and removal of the pressure gradient reproduce a finite stopping time for the cessation flow of yield-stress fluids in agreement with previous analytical estimates.</dcterms:abstract>
    <dcterms:title>Channel flow of a tensorial shear-thinning Maxwell model : Lattice Boltzmann simulations</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen