Publikation:

Ultrasonically driven nanomechanical single-electron shuttle

Lade...
Vorschaubild

Dateien

Koenig_234860.pdf
Koenig_234860.pdfGröße: 2.19 MBDownloads: 328

Datum

2008

Autor:innen

König, Daniel R.
Kotthaus, Jörg P.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nature Nanotechnology. 2008, 3(8), pp. 482-485. ISSN 1748-3387. eISSN 1748-3395. Available under: doi: 10.1038/nnano.2008.178

Zusammenfassung

The single-electron transistor is the fastest and most sensitive electrometer available today. Single-electron pumps and turnstiles are also being explored as part of the global effort to redefine the ampere in terms of the fundamental physical constants. However, the possibility of electrons tunnelling coherently through these devices, a phenomenon known as co-tunnelling, imposes a fundamental limit on device performance. It has been predicted that it should be possible to completely suppress co-tunnelling in mechanical versions of the single-electron transistor, which would allow mechanical devices to outperform conventional single-electron transistors in many applications. However, the mechanical devices developed so far are fundamentally limited by unwanted interactions with the electrical mechanisms that are used to excite the devices. Here we show that it is possible to overcome this problem by using ultrasonic waves rather than electrical currents as the excitation mechanism, which we demonstrate at low temperatures. This is a significant step towards the development of high-performance devices.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690KÖNIG, Daniel R., Eva M. WEIG, Jörg P. KOTTHAUS, 2008. Ultrasonically driven nanomechanical single-electron shuttle. In: Nature Nanotechnology. 2008, 3(8), pp. 482-485. ISSN 1748-3387. eISSN 1748-3395. Available under: doi: 10.1038/nnano.2008.178
BibTex
@article{Konig2008-08Ultra-23486,
  year={2008},
  doi={10.1038/nnano.2008.178},
  title={Ultrasonically driven nanomechanical single-electron shuttle},
  number={8},
  volume={3},
  issn={1748-3387},
  journal={Nature Nanotechnology},
  pages={482--485},
  author={König, Daniel R. and Weig, Eva M. and Kotthaus, Jörg P.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23486">
    <dc:contributor>Weig, Eva M.</dc:contributor>
    <dc:contributor>Kotthaus, Jörg P.</dc:contributor>
    <dcterms:bibliographicCitation>Nature Nanotechnology ; 3 (2008), 8. - S. 482-485</dcterms:bibliographicCitation>
    <dc:creator>Kotthaus, Jörg P.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>König, Daniel R.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23486/1/Koenig_234860.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-10T07:29:58Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23486"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23486/1/Koenig_234860.pdf"/>
    <dc:creator>Weig, Eva M.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-10T07:29:58Z</dc:date>
    <dcterms:title>Ultrasonically driven nanomechanical single-electron shuttle</dcterms:title>
    <dcterms:issued>2008-08</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>König, Daniel R.</dc:creator>
    <dcterms:abstract xml:lang="eng">The single-electron transistor is the fastest and most sensitive electrometer available today. Single-electron pumps and turnstiles are also being explored as part of the global effort to redefine the ampere in terms of the fundamental physical constants. However, the possibility of electrons tunnelling coherently through these devices, a phenomenon known as co-tunnelling, imposes a fundamental limit on device performance. It has been predicted that it should be possible to completely suppress co-tunnelling in mechanical versions of the single-electron transistor, which would allow mechanical devices to outperform conventional single-electron transistors in many applications. However, the mechanical devices developed so far are fundamentally limited by unwanted interactions with the electrical mechanisms that are used to excite the devices. Here we show that it is possible to overcome this problem by using ultrasonic waves rather than electrical currents as the excitation mechanism, which we demonstrate at low temperatures. This is a significant step towards the development of high-performance devices.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen