Ultrasonically driven nanomechanical single-electron shuttle
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The single-electron transistor is the fastest and most sensitive electrometer available today. Single-electron pumps and turnstiles are also being explored as part of the global effort to redefine the ampere in terms of the fundamental physical constants. However, the possibility of electrons tunnelling coherently through these devices, a phenomenon known as co-tunnelling, imposes a fundamental limit on device performance. It has been predicted that it should be possible to completely suppress co-tunnelling in mechanical versions of the single-electron transistor, which would allow mechanical devices to outperform conventional single-electron transistors in many applications. However, the mechanical devices developed so far are fundamentally limited by unwanted interactions with the electrical mechanisms that are used to excite the devices. Here we show that it is possible to overcome this problem by using ultrasonic waves rather than electrical currents as the excitation mechanism, which we demonstrate at low temperatures. This is a significant step towards the development of high-performance devices.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KÖNIG, Daniel R., Eva M. WEIG, Jörg P. KOTTHAUS, 2008. Ultrasonically driven nanomechanical single-electron shuttle. In: Nature Nanotechnology. 2008, 3(8), pp. 482-485. ISSN 1748-3387. eISSN 1748-3395. Available under: doi: 10.1038/nnano.2008.178BibTex
@article{Konig2008-08Ultra-23486, year={2008}, doi={10.1038/nnano.2008.178}, title={Ultrasonically driven nanomechanical single-electron shuttle}, number={8}, volume={3}, issn={1748-3387}, journal={Nature Nanotechnology}, pages={482--485}, author={König, Daniel R. and Weig, Eva M. and Kotthaus, Jörg P.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23486"> <dc:contributor>Weig, Eva M.</dc:contributor> <dc:contributor>Kotthaus, Jörg P.</dc:contributor> <dcterms:bibliographicCitation>Nature Nanotechnology ; 3 (2008), 8. - S. 482-485</dcterms:bibliographicCitation> <dc:creator>Kotthaus, Jörg P.</dc:creator> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:contributor>König, Daniel R.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23486/1/Koenig_234860.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-10T07:29:58Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23486"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23486/1/Koenig_234860.pdf"/> <dc:creator>Weig, Eva M.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-10T07:29:58Z</dc:date> <dcterms:title>Ultrasonically driven nanomechanical single-electron shuttle</dcterms:title> <dcterms:issued>2008-08</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>König, Daniel R.</dc:creator> <dcterms:abstract xml:lang="eng">The single-electron transistor is the fastest and most sensitive electrometer available today. Single-electron pumps and turnstiles are also being explored as part of the global effort to redefine the ampere in terms of the fundamental physical constants. However, the possibility of electrons tunnelling coherently through these devices, a phenomenon known as co-tunnelling, imposes a fundamental limit on device performance. It has been predicted that it should be possible to completely suppress co-tunnelling in mechanical versions of the single-electron transistor, which would allow mechanical devices to outperform conventional single-electron transistors in many applications. However, the mechanical devices developed so far are fundamentally limited by unwanted interactions with the electrical mechanisms that are used to excite the devices. Here we show that it is possible to overcome this problem by using ultrasonic waves rather than electrical currents as the excitation mechanism, which we demonstrate at low temperatures. This is a significant step towards the development of high-performance devices.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>