Ultrasonically driven nanomechanical single-electron shuttle

Lade...
Vorschaubild
Dateien
Koenig_234860.pdf
Koenig_234860.pdfGröße: 2.19 MBDownloads: 315
Datum
2008
Autor:innen
König, Daniel R.
Kotthaus, Jörg P.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Nature Nanotechnology. 2008, 3(8), pp. 482-485. ISSN 1748-3387. eISSN 1748-3395. Available under: doi: 10.1038/nnano.2008.178
Zusammenfassung

The single-electron transistor is the fastest and most sensitive electrometer available today. Single-electron pumps and turnstiles are also being explored as part of the global effort to redefine the ampere in terms of the fundamental physical constants. However, the possibility of electrons tunnelling coherently through these devices, a phenomenon known as co-tunnelling, imposes a fundamental limit on device performance. It has been predicted that it should be possible to completely suppress co-tunnelling in mechanical versions of the single-electron transistor, which would allow mechanical devices to outperform conventional single-electron transistors in many applications. However, the mechanical devices developed so far are fundamentally limited by unwanted interactions with the electrical mechanisms that are used to excite the devices. Here we show that it is possible to overcome this problem by using ultrasonic waves rather than electrical currents as the excitation mechanism, which we demonstrate at low temperatures. This is a significant step towards the development of high-performance devices.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KÖNIG, Daniel R., Eva M. WEIG, Jörg P. KOTTHAUS, 2008. Ultrasonically driven nanomechanical single-electron shuttle. In: Nature Nanotechnology. 2008, 3(8), pp. 482-485. ISSN 1748-3387. eISSN 1748-3395. Available under: doi: 10.1038/nnano.2008.178
BibTex
@article{Konig2008-08Ultra-23486,
  year={2008},
  doi={10.1038/nnano.2008.178},
  title={Ultrasonically driven nanomechanical single-electron shuttle},
  number={8},
  volume={3},
  issn={1748-3387},
  journal={Nature Nanotechnology},
  pages={482--485},
  author={König, Daniel R. and Weig, Eva M. and Kotthaus, Jörg P.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23486">
    <dc:contributor>Weig, Eva M.</dc:contributor>
    <dc:contributor>Kotthaus, Jörg P.</dc:contributor>
    <dcterms:bibliographicCitation>Nature Nanotechnology ; 3 (2008), 8. - S. 482-485</dcterms:bibliographicCitation>
    <dc:creator>Kotthaus, Jörg P.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>König, Daniel R.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23486/1/Koenig_234860.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-10T07:29:58Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23486"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23486/1/Koenig_234860.pdf"/>
    <dc:creator>Weig, Eva M.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-10T07:29:58Z</dc:date>
    <dcterms:title>Ultrasonically driven nanomechanical single-electron shuttle</dcterms:title>
    <dcterms:issued>2008-08</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>König, Daniel R.</dc:creator>
    <dcterms:abstract xml:lang="eng">The single-electron transistor is the fastest and most sensitive electrometer available today. Single-electron pumps and turnstiles are also being explored as part of the global effort to redefine the ampere in terms of the fundamental physical constants. However, the possibility of electrons tunnelling coherently through these devices, a phenomenon known as co-tunnelling, imposes a fundamental limit on device performance. It has been predicted that it should be possible to completely suppress co-tunnelling in mechanical versions of the single-electron transistor, which would allow mechanical devices to outperform conventional single-electron transistors in many applications. However, the mechanical devices developed so far are fundamentally limited by unwanted interactions with the electrical mechanisms that are used to excite the devices. Here we show that it is possible to overcome this problem by using ultrasonic waves rather than electrical currents as the excitation mechanism, which we demonstrate at low temperatures. This is a significant step towards the development of high-performance devices.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen