Publikation: Cyclic 2-structures and spaces of orderings of power series fields in two variables
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2011
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Algebra. 2011, 335(1), pp. 36-48. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2011.02.026
Zusammenfassung
We consider the space of orderings of the field R((x,y)) and the space of orderings of the field R((x))(y), where R is a real closed field. We examine the structure of these objects and their relationship to each other. We define a cyclic 2-structure to be a pair (S,Φ) where S is a cyclically ordered set and Φ is an equivalence relation on S such that each equivalence class has exactly two elements. We show that each of these spaces of orderings is described by a cyclic 2-structure, in a natural way. We also show that if the real closed field R is archimedean then the space of R-places of these fields is describable in terms of the cyclic 2-structure.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Orderings, Real places, Formal power series
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
KUHLMANN, Salma, Murray MARSHALL, Katarzyna OSIAK, 2011. Cyclic 2-structures and spaces of orderings of power series fields in two variables. In: Journal of Algebra. 2011, 335(1), pp. 36-48. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2011.02.026BibTex
@article{Kuhlmann2011Cycli-16744, year={2011}, doi={10.1016/j.jalgebra.2011.02.026}, title={Cyclic 2-structures and spaces of orderings of power series fields in two variables}, number={1}, volume={335}, issn={0021-8693}, journal={Journal of Algebra}, pages={36--48}, author={Kuhlmann, Salma and Marshall, Murray and Osiak, Katarzyna} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/16744"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/16744"/> <dcterms:title>Cyclic 2-structures and spaces of orderings of power series fields in two variables</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Marshall, Murray</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-18T10:47:34Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>Publ. in: Journal of Algebra ; 335 (2011), 1. - pp. 36-48</dcterms:bibliographicCitation> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-18T10:47:34Z</dc:date> <dc:contributor>Osiak, Katarzyna</dc:contributor> <dcterms:abstract xml:lang="eng">We consider the space of orderings of the field R((x,y)) and the space of orderings of the field R((x))(y), where R is a real closed field. We examine the structure of these objects and their relationship to each other. We define a cyclic 2-structure to be a pair (S,Φ) where S is a cyclically ordered set and Φ is an equivalence relation on S such that each equivalence class has exactly two elements. We show that each of these spaces of orderings is described by a cyclic 2-structure, in a natural way. We also show that if the real closed field R is archimedean then the space of R-places of these fields is describable in terms of the cyclic 2-structure.</dcterms:abstract> <dc:contributor>Marshall, Murray</dc:contributor> <dc:creator>Kuhlmann, Salma</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:creator>Osiak, Katarzyna</dc:creator> <dcterms:issued>2011</dcterms:issued> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja