Publikation:

RoboVisAR : Immersive Authoring of Condition-based AR Robot Visualisations

Lade...
Vorschaubild

Dateien

Lunding_2-mgaacf00m4s78.pdf
Lunding_2-mgaacf00m4s78.pdfGröße: 17.42 MBDownloads: 62

Datum

2024

Autor:innen

Skovhus Lunding, Rasmus
Skovhus Lunding, Mille
Graves Petersen, Marianne
Grønbæk, Kaj
Suzuki, Ryo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

GROLLMAN, Dan, ed., Elizabeth BROADBENT, ed.. HRI '24 : Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. New York, NY: ACM, 2024, pp. 462-471. ISBN 979-8-4007-0322-5. Available under: doi: 10.1145/3610977.3634972

Zusammenfassung

We introduce RoboVisAR, an immersive augmented reality (AR) authoring tool for in-situ robot visualisations. AR robot visualisations, such as the robot's movement path, status, and safety zones, have been shown to benefit human-robot collaboration. However, their creation requires extensive skills in both robotics and AR programming. To address this, RoboVisAR allows users to create custom AR robot visualisations without programming. By recording an example robot behaviour, users can design, combine, and test visualisations in-situ within a mixed reality environment. RoboVisAR currently supports six types of visualisations (Path, Point of Interest, Safety Zone, Robot State, Message, Force/Torque) and four types of conditions for when they are displayed (Robot State, Proximity, Box, Force/Torque). With this tool, users can easily present different visualisations on demand and make them context-aware to avoid visual clutter. An expert user study with three participants suggests that users appreciate the customizability of the visualisations, which could easily be authored in less than ten minutes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

HRI '24 : ACM/IEEE International Conference on Human-Robot Interaction, 11. März 2024 - 15. März 2024, Boulder, CO, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SKOVHUS LUNDING, Rasmus, Mille SKOVHUS LUNDING, Tiare FEUCHTNER, Marianne GRAVES PETERSEN, Kaj GRØNBÆK, Ryo SUZUKI, 2024. RoboVisAR : Immersive Authoring of Condition-based AR Robot Visualisations. HRI '24 : ACM/IEEE International Conference on Human-Robot Interaction. Boulder, CO, USA, 11. März 2024 - 15. März 2024. In: GROLLMAN, Dan, ed., Elizabeth BROADBENT, ed.. HRI '24 : Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. New York, NY: ACM, 2024, pp. 462-471. ISBN 979-8-4007-0322-5. Available under: doi: 10.1145/3610977.3634972
BibTex
@inproceedings{SkovhusLunding2024-03-11RoboV-69712,
  year={2024},
  doi={10.1145/3610977.3634972},
  title={RoboVisAR : Immersive Authoring of Condition-based AR Robot Visualisations},
  isbn={979-8-4007-0322-5},
  publisher={ACM},
  address={New York, NY},
  booktitle={HRI '24 : Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction},
  pages={462--471},
  editor={Grollman, Dan and Broadbent, Elizabeth},
  author={Skovhus Lunding, Rasmus and Skovhus Lunding, Mille and Feuchtner, Tiare and Graves Petersen, Marianne and Grønbæk, Kaj and Suzuki, Ryo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69712">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69712/1/Lunding_2-mgaacf00m4s78.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-27T08:10:35Z</dcterms:available>
    <dc:contributor>Skovhus Lunding, Rasmus</dc:contributor>
    <dcterms:issued>2024-03-11</dcterms:issued>
    <dc:creator>Graves Petersen, Marianne</dc:creator>
    <dc:contributor>Grønbæk, Kaj</dc:contributor>
    <dc:contributor>Skovhus Lunding, Mille</dc:contributor>
    <dc:contributor>Suzuki, Ryo</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69712"/>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69712/1/Lunding_2-mgaacf00m4s78.pdf"/>
    <dc:contributor>Feuchtner, Tiare</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract>We introduce RoboVisAR, an immersive augmented reality (AR) authoring tool for in-situ robot visualisations. AR robot visualisations, such as the robot's movement path, status, and safety zones, have been shown to benefit human-robot collaboration. However, their creation requires extensive skills in both robotics and AR programming. To address this, RoboVisAR allows users to create custom AR robot visualisations without programming. By recording an example robot behaviour, users can design, combine, and test visualisations in-situ within a mixed reality environment. RoboVisAR currently supports six types of visualisations (Path, Point of Interest, Safety Zone, Robot State, Message, Force/Torque) and four types of conditions for when they are displayed (Robot State, Proximity, Box, Force/Torque). With this tool, users can easily present different visualisations on demand and make them context-aware to avoid visual clutter. An expert user study with three participants suggests that users appreciate the customizability of the visualisations, which could easily be authored in less than ten minutes.</dcterms:abstract>
    <dc:creator>Grønbæk, Kaj</dc:creator>
    <dc:creator>Suzuki, Ryo</dc:creator>
    <dc:creator>Skovhus Lunding, Rasmus</dc:creator>
    <dc:contributor>Graves Petersen, Marianne</dc:contributor>
    <dc:creator>Skovhus Lunding, Mille</dc:creator>
    <dcterms:title>RoboVisAR : Immersive Authoring of Condition-based AR Robot Visualisations</dcterms:title>
    <dc:creator>Feuchtner, Tiare</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-27T08:10:35Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen