Centrality-Preserving Exact Reductions of Multi-Layer Networks

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
MARGARIA, Tiziana, ed., Bernhard STEFFEN, ed.. Leveraging Applications of Formal Methods, Verification and Validation : Engineering Principles, 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20–30, 2020, proceedings, part II. Cham: Springer, 2020, pp. 397-415. Lecture Notes in Computer Science. 12477. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-61469-0. Available under: doi: 10.1007/978-3-030-61470-6_24
Zusammenfassung

Multi-Layer Networks (MLN) generalise the traditional, single layered networks, by allowing to simultaneously express multiple aspects of relationships in collective systems, while keeping the description intuitive and compact. As such, they are increasingly gaining popularity for modelling Collective Adaptive Systems (CAS), e.g. engineered cyber-physical systems or animal collectives. One of the most important notions in network analysis are centrality measures, which inform us about the relative importance of nodes. Computing centrality measures is often challenging for large and dense single-layer networks. This challenge is even more prominent in the multi-layer setup, and thus motivates the design of efficient, centrality-preserving MLN reduction techniques. Network centrality does not naturally translate to its multi-layer counterpart, since the interpretation of the relative importance of nodes and layers may differ across application domains. In this paper, we take a notion of eigenvector-based centrality for a special type of MLNs (multiplex MLNs), with undirected, weighted edges, which was recently proposed in the literature. Then, we define and implement a framework for exact reductions for this class of MLNs and accompanying eigenvector centrality. Our method is inspired by the existing bisimulation-based exact model reductions for single-layered networks: the idea behind the reduction is to identify and aggregate nodes (resp. layers) with the same centrality score. We do so via efficient, static, syntactic transformations. We empirically demonstrate the speed up in the computation over a range of real-world MLNs from different domains including biology and social science.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Multi-Layer Networks, Centrality measures, Model reduction, Efficient algorithms
Konferenz
9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, 20. Okt. 2020 - 30. Okt. 2020, Rhodes, Greece
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690PETROV, Tatjana, Stefano TOGNAZZI, 2020. Centrality-Preserving Exact Reductions of Multi-Layer Networks. 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020. Rhodes, Greece, 20. Okt. 2020 - 30. Okt. 2020. In: MARGARIA, Tiziana, ed., Bernhard STEFFEN, ed.. Leveraging Applications of Formal Methods, Verification and Validation : Engineering Principles, 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20–30, 2020, proceedings, part II. Cham: Springer, 2020, pp. 397-415. Lecture Notes in Computer Science. 12477. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-61469-0. Available under: doi: 10.1007/978-3-030-61470-6_24
BibTex
@inproceedings{Petrov2020Centr-51676,
  year={2020},
  doi={10.1007/978-3-030-61470-6_24},
  title={Centrality-Preserving Exact Reductions of Multi-Layer Networks},
  number={12477},
  isbn={978-3-030-61469-0},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Leveraging Applications of Formal Methods, Verification and Validation : Engineering Principles, 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20–30, 2020, proceedings, part II},
  pages={397--415},
  editor={Margaria, Tiziana and Steffen, Bernhard},
  author={Petrov, Tatjana and Tognazzi, Stefano}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51676">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-05T14:43:29Z</dcterms:available>
    <dc:contributor>Tognazzi, Stefano</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <dc:creator>Petrov, Tatjana</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51676"/>
    <dc:creator>Tognazzi, Stefano</dc:creator>
    <dcterms:title>Centrality-Preserving Exact Reductions of Multi-Layer Networks</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Multi-Layer Networks (MLN) generalise the traditional, single layered networks, by allowing to simultaneously express multiple aspects of relationships in collective systems, while keeping the description intuitive and compact. As such, they are increasingly gaining popularity for modelling Collective Adaptive Systems (CAS), e.g. engineered cyber-physical systems or animal collectives. One of the most important notions in network analysis are centrality measures, which inform us about the relative importance of nodes. Computing centrality measures is often challenging for large and dense single-layer networks. This challenge is even more prominent in the multi-layer setup, and thus motivates the design of efficient, centrality-preserving MLN reduction techniques. Network centrality does not naturally translate to its multi-layer counterpart, since the interpretation of the relative importance of nodes and layers may differ across application domains. In this paper, we take a notion of eigenvector-based centrality for a special type of MLNs (multiplex MLNs), with undirected, weighted edges, which was recently proposed in the literature. Then, we define and implement a framework for exact reductions for this class of MLNs and accompanying eigenvector centrality. Our method is inspired by the existing bisimulation-based exact model reductions for single-layered networks: the idea behind the reduction is to identify and aggregate nodes (resp. layers) with the same centrality score. We do so via efficient, static, syntactic transformations. We empirically demonstrate the speed up in the computation over a range of real-world MLNs from different domains including biology and social science.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-05T14:43:29Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen