Inferential power in identifying frequency-dependent social learning strengthened by increasing behavioural options

Lade...
Vorschaubild
Dateien
Barrett_2-mgp4l6lp6vzz9.pdf
Barrett_2-mgp4l6lp6vzz9.pdfGröße: 802.4 KBDownloads: 9
Datum
2023
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Animal Ecology. Wiley. 2023, 92(8), pp. 1532-1544. ISSN 0021-8790. eISSN 1365-2656. Available under: doi: 10.1111/1365-2656.13826
Zusammenfassung
  1. Two-option choice experimental designs are the most commonly employed framework for identifying evidence of social learning or social learning strategies in captive and wild populations. In nature, however, animals often choose from more than two behaviours, and multiple innovations may arise simultaneously. Studies of animal social learning are often constrained by small sample sizes, which limit researchers' ability to convincingly identify the proposed social learning strategy responsible for behavioural choice.

    2. In this study, I examine whether expanding behavioural options from k = 2 to k > 2 and increasing sample size affects inferential power in identifying social learning strategies. I focus on three frequency-dependent learning strategies: conformist transmission, unbiased transmission and anti-conformist transmission.

    3. I simulate 100 datasets for 72 parameter combinations, yielding 7200 simulations. I evaluate number of options (k = 2, 3, 4, 5), population size (n = 5, 10, 25, 50, 100, 250) and the logarithmic strength of frequency dependence (log(f) = log(1∕3), log(1), log(3)). I then fit a Bayesian social learning model to simulated data to evaluate the percent of the posterior consistent with type of frequency dependence, posterior standard deviations, highest posterior density intervals and posterior medians relative to the true simulated value of log(f).

    4. I show that increasing the number of options an animal can choose from increases the accuracy and certainty of identifying the type and magnitude of frequency-dependent social learning. These effects are particularly pronounced at small to intermediate sample sizes, which are common in empirical studies of animal social learning.

    5. These findings suggest that knowing what an animal did not choose is equally important as knowing what an animal did choose when identifying social learning strategies. By strategically increasing the number of behaviours from which an animal can choose, researchers can increase inferential power in identifying social learning strategies without increasing sample size, that is, adding additional animals or collecting more data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
conformist transmission, conformity, cultural evolution, frequency dependence, multinomial, social learning
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BARRETT, Brendan J., 2023. Inferential power in identifying frequency-dependent social learning strengthened by increasing behavioural options. In: Journal of Animal Ecology. Wiley. 2023, 92(8), pp. 1532-1544. ISSN 0021-8790. eISSN 1365-2656. Available under: doi: 10.1111/1365-2656.13826
BibTex
@article{Barrett2023Infer-59110,
  year={2023},
  doi={10.1111/1365-2656.13826},
  title={Inferential power in identifying frequency-dependent social learning strengthened by increasing behavioural options},
  number={8},
  volume={92},
  issn={0021-8790},
  journal={Journal of Animal Ecology},
  pages={1532--1544},
  author={Barrett, Brendan J.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59110">
    <dcterms:title>Inferential power in identifying frequency-dependent social learning strengthened by increasing behavioural options</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59110/1/Barrett_2-mgp4l6lp6vzz9.pdf"/>
    <dc:contributor>Barrett, Brendan J.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-10T14:13:56Z</dc:date>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59110"/>
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-10T14:13:56Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59110/1/Barrett_2-mgp4l6lp6vzz9.pdf"/>
    <dcterms:abstract xml:lang="eng">1. Two-option choice experimental designs are the most commonly employed framework for identifying evidence of social learning or social learning strategies in captive and wild populations. In nature, however, animals often choose from more than two behaviours, and multiple innovations may arise simultaneously. Studies of animal social learning are often constrained by small sample sizes, which limit researchers' ability to convincingly identify the proposed social learning strategy responsible for behavioural choice.&lt;br /&gt;&lt;br /&gt;2. In this study, I examine whether expanding behavioural options from k = 2 to k &gt; 2 and increasing sample size affects inferential power in identifying social learning strategies. I focus on three frequency-dependent learning strategies: conformist transmission, unbiased transmission and anti-conformist transmission.&lt;br /&gt;&lt;br /&gt;3. I simulate 100 datasets for 72 parameter combinations, yielding 7200 simulations. I evaluate number of options (k = 2, 3, 4, 5), population size (n = 5, 10, 25, 50, 100, 250) and the logarithmic strength of frequency dependence (log(f) = log(1∕3), log(1), log(3)). I then fit a Bayesian social learning model to simulated data to evaluate the percent of the posterior consistent with type of frequency dependence, posterior standard deviations, highest posterior density intervals and posterior medians relative to the true simulated value of log(f).&lt;br /&gt;&lt;br /&gt;4. I show that increasing the number of options an animal can choose from increases the accuracy and certainty of identifying the type and magnitude of frequency-dependent social learning. These effects are particularly pronounced at small to intermediate sample sizes, which are common in empirical studies of animal social learning.&lt;br /&gt;&lt;br /&gt;5. These findings suggest that knowing what an animal did not choose is equally important as knowing what an animal did choose when identifying social learning strategies. By strategically increasing the number of behaviours from which an animal can choose, researchers can increase inferential power in identifying social learning strategies without increasing sample size, that is, adding additional animals or collecting more data.</dcterms:abstract>
    <dc:creator>Barrett, Brendan J.</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen