Publikation:

Multi-task learning for pKa prediction

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Skolidis, Grigorios
Hansen, Katja
Sanguinetti, Guido

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Computer-Aided Molecular Design. Springer. 2012, 26(7), pp. 883-895. ISSN 0920-654X. eISSN 1573-4951. Available under: doi: 10.1007/s10822-012-9582-x

Zusammenfassung

Many compound properties depend directly on the dissociation constants of its acidic and basic groups. Significant effort has been invested in computational models to predict these constants. For linear regression models, compounds are often divided into chemically motivated classes, with a separate model for each class. However, sometimes too few measurements are available for a class to build a reasonable model, e.g., when investigating a new compound series. If data for related classes are available, we show that multi-task learning can be used to improve predictions by utilizing data from these other classes. We investigate performance of linear Gaussian process regression models (single task, pooling, and multi-task models) in the low sample size regime, using a published data set (n = 698, mostly monoprotic, in aqueous solution) divided beforehand into 15 classes. A multi-task regression model using the intrinsic model of co-regionalization and incomplete Cholesky decomposition performed best in 85 % of all experiments. The presented approach can be applied to estimate other molecular properties where few measurements are available.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

pKa prediction, Multi-task learning, Quantitative structure–property relationships, Gaussian processes

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690SKOLIDIS, Grigorios, Katja HANSEN, Guido SANGUINETTI, Matthias RUPP, 2012. Multi-task learning for pKa prediction. In: Journal of Computer-Aided Molecular Design. Springer. 2012, 26(7), pp. 883-895. ISSN 0920-654X. eISSN 1573-4951. Available under: doi: 10.1007/s10822-012-9582-x
BibTex
@article{Skolidis2012-07Multi-52163,
  year={2012},
  doi={10.1007/s10822-012-9582-x},
  title={Multi-task learning for pK<sub>a</sub> prediction},
  number={7},
  volume={26},
  issn={0920-654X},
  journal={Journal of Computer-Aided Molecular Design},
  pages={883--895},
  author={Skolidis, Grigorios and Hansen, Katja and Sanguinetti, Guido and Rupp, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52163">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-17T14:24:15Z</dcterms:available>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dcterms:abstract xml:lang="eng">Many compound properties depend directly on the dissociation constants of its acidic and basic groups. Significant effort has been invested in computational models to predict these constants. For linear regression models, compounds are often divided into chemically motivated classes, with a separate model for each class. However, sometimes too few measurements are available for a class to build a reasonable model, e.g., when investigating a new compound series. If data for related classes are available, we show that multi-task learning can be used to improve predictions by utilizing data from these other classes. We investigate performance of linear Gaussian process regression models (single task, pooling, and multi-task models) in the low sample size regime, using a published data set (n = 698, mostly monoprotic, in aqueous solution) divided beforehand into 15 classes. A multi-task regression model using the intrinsic model of co-regionalization and incomplete Cholesky decomposition performed best in 85 % of all experiments. The presented approach can be applied to estimate other molecular properties where few measurements are available.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Hansen, Katja</dc:creator>
    <dcterms:title>Multi-task learning for pK&lt;sub&gt;a&lt;/sub&gt; prediction</dcterms:title>
    <dc:creator>Sanguinetti, Guido</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52163"/>
    <dc:creator>Skolidis, Grigorios</dc:creator>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dc:contributor>Sanguinetti, Guido</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Skolidis, Grigorios</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hansen, Katja</dc:contributor>
    <dcterms:issued>2012-07</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-17T14:24:15Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen