Publikation:

Data analysis and call prediction on dyadic data from an understudied population

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Rextin, Aimal
Hayat, Shamaila
Khan, Numair
Malik, Muhammad Muddassir

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Pervasive and Mobile Computing. 2017, 41, pp. 166-178. ISSN 1574-1192. eISSN 1873-1589. Available under: doi: 10.1016/j.pmcj.2017.08.002

Zusammenfassung

In this paper we predict outgoing mobile phone calls using machine learning and time clusters based approaches. We analyze to which extent the calling activity of mobile phone users is predictable. The premise is that mobile phone users exhibit temporal regularity in their interactions with majority of their contacts. In the sociological context, most social interactions have fairly reliable temporal regularity. If we quantify the extension of this behavior to interactions on mobile phones we expect that pairwise interaction is not merely a result of randomness, rather it exhibits a temporal pattern. To this end, we not only tested our approach on an original mobile phone usage dataset from a developing country, Pakistan, but we also analyzed the famous Reality Mining Dataset and the Nokia Dataset (from a European country), where we found an equitable basis for comparison with our data. Our original data consists of 783 users and more than 12,000 active dyads. Our results show that temporal information about pairwise user interactions can predict future calls with reasonable accuracy.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Smartphone, Call-logs, Call prediction, Temporal regularity

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690NASIM, Mehwish, Aimal REXTIN, Shamaila HAYAT, Numair KHAN, Muhammad Muddassir MALIK, 2017. Data analysis and call prediction on dyadic data from an understudied population. In: Pervasive and Mobile Computing. 2017, 41, pp. 166-178. ISSN 1574-1192. eISSN 1873-1589. Available under: doi: 10.1016/j.pmcj.2017.08.002
BibTex
@article{Nasim2017-10analy-40818,
  year={2017},
  doi={10.1016/j.pmcj.2017.08.002},
  title={Data analysis and call prediction on dyadic data from an understudied population},
  volume={41},
  issn={1574-1192},
  journal={Pervasive and Mobile Computing},
  pages={166--178},
  author={Nasim, Mehwish and Rextin, Aimal and Hayat, Shamaila and Khan, Numair and Malik, Muhammad Muddassir}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40818">
    <dc:creator>Rextin, Aimal</dc:creator>
    <dc:contributor>Hayat, Shamaila</dc:contributor>
    <dc:creator>Nasim, Mehwish</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Rextin, Aimal</dc:contributor>
    <dc:contributor>Nasim, Mehwish</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40818"/>
    <dc:creator>Hayat, Shamaila</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-01T10:15:56Z</dc:date>
    <dcterms:issued>2017-10</dcterms:issued>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Data analysis and call prediction on dyadic data from an understudied population</dcterms:title>
    <dc:contributor>Malik, Muhammad Muddassir</dc:contributor>
    <dc:contributor>Khan, Numair</dc:contributor>
    <dc:creator>Khan, Numair</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-01T10:15:56Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Malik, Muhammad Muddassir</dc:creator>
    <dcterms:abstract xml:lang="eng">In this paper we predict outgoing mobile phone calls using machine learning and time clusters based approaches. We analyze to which extent the calling activity of mobile phone users is predictable. The premise is that mobile phone users exhibit temporal regularity in their interactions with majority of their contacts. In the sociological context, most social interactions have fairly reliable temporal regularity. If we quantify the extension of this behavior to interactions on mobile phones we expect that pairwise interaction is not merely a result of randomness, rather it exhibits a temporal pattern. To this end, we not only tested our approach on an original mobile phone usage dataset from a developing country, Pakistan, but we also analyzed the famous Reality Mining Dataset and the Nokia Dataset (from a European country), where we found an equitable basis for comparison with our data. Our original data consists of 783 users and more than 12,000 active dyads. Our results show that temporal information about pairwise user interactions can predict future calls with reasonable accuracy.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen