Data analysis and call prediction on dyadic data from an understudied population
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we predict outgoing mobile phone calls using machine learning and time clusters based approaches. We analyze to which extent the calling activity of mobile phone users is predictable. The premise is that mobile phone users exhibit temporal regularity in their interactions with majority of their contacts. In the sociological context, most social interactions have fairly reliable temporal regularity. If we quantify the extension of this behavior to interactions on mobile phones we expect that pairwise interaction is not merely a result of randomness, rather it exhibits a temporal pattern. To this end, we not only tested our approach on an original mobile phone usage dataset from a developing country, Pakistan, but we also analyzed the famous Reality Mining Dataset and the Nokia Dataset (from a European country), where we found an equitable basis for comparison with our data. Our original data consists of 783 users and more than 12,000 active dyads. Our results show that temporal information about pairwise user interactions can predict future calls with reasonable accuracy.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NASIM, Mehwish, Aimal REXTIN, Shamaila HAYAT, Numair KHAN, Muhammad Muddassir MALIK, 2017. Data analysis and call prediction on dyadic data from an understudied population. In: Pervasive and Mobile Computing. 2017, 41, pp. 166-178. ISSN 1574-1192. eISSN 1873-1589. Available under: doi: 10.1016/j.pmcj.2017.08.002BibTex
@article{Nasim2017-10analy-40818, year={2017}, doi={10.1016/j.pmcj.2017.08.002}, title={Data analysis and call prediction on dyadic data from an understudied population}, volume={41}, issn={1574-1192}, journal={Pervasive and Mobile Computing}, pages={166--178}, author={Nasim, Mehwish and Rextin, Aimal and Hayat, Shamaila and Khan, Numair and Malik, Muhammad Muddassir} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40818"> <dc:creator>Rextin, Aimal</dc:creator> <dc:contributor>Hayat, Shamaila</dc:contributor> <dc:creator>Nasim, Mehwish</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Rextin, Aimal</dc:contributor> <dc:contributor>Nasim, Mehwish</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40818"/> <dc:creator>Hayat, Shamaila</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-01T10:15:56Z</dc:date> <dcterms:issued>2017-10</dcterms:issued> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Data analysis and call prediction on dyadic data from an understudied population</dcterms:title> <dc:contributor>Malik, Muhammad Muddassir</dc:contributor> <dc:contributor>Khan, Numair</dc:contributor> <dc:creator>Khan, Numair</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-01T10:15:56Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Malik, Muhammad Muddassir</dc:creator> <dcterms:abstract xml:lang="eng">In this paper we predict outgoing mobile phone calls using machine learning and time clusters based approaches. We analyze to which extent the calling activity of mobile phone users is predictable. The premise is that mobile phone users exhibit temporal regularity in their interactions with majority of their contacts. In the sociological context, most social interactions have fairly reliable temporal regularity. If we quantify the extension of this behavior to interactions on mobile phones we expect that pairwise interaction is not merely a result of randomness, rather it exhibits a temporal pattern. To this end, we not only tested our approach on an original mobile phone usage dataset from a developing country, Pakistan, but we also analyzed the famous Reality Mining Dataset and the Nokia Dataset (from a European country), where we found an equitable basis for comparison with our data. Our original data consists of 783 users and more than 12,000 active dyads. Our results show that temporal information about pairwise user interactions can predict future calls with reasonable accuracy.</dcterms:abstract> </rdf:Description> </rdf:RDF>