Data analysis and call prediction on dyadic data from an understudied population

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Rextin, Aimal
Hayat, Shamaila
Khan, Numair
Malik, Muhammad Muddassir
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Pervasive and Mobile Computing. 2017, 41, pp. 166-178. ISSN 1574-1192. eISSN 1873-1589. Available under: doi: 10.1016/j.pmcj.2017.08.002
Zusammenfassung

In this paper we predict outgoing mobile phone calls using machine learning and time clusters based approaches. We analyze to which extent the calling activity of mobile phone users is predictable. The premise is that mobile phone users exhibit temporal regularity in their interactions with majority of their contacts. In the sociological context, most social interactions have fairly reliable temporal regularity. If we quantify the extension of this behavior to interactions on mobile phones we expect that pairwise interaction is not merely a result of randomness, rather it exhibits a temporal pattern. To this end, we not only tested our approach on an original mobile phone usage dataset from a developing country, Pakistan, but we also analyzed the famous Reality Mining Dataset and the Nokia Dataset (from a European country), where we found an equitable basis for comparison with our data. Our original data consists of 783 users and more than 12,000 active dyads. Our results show that temporal information about pairwise user interactions can predict future calls with reasonable accuracy.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Smartphone, Call-logs, Call prediction, Temporal regularity
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690NASIM, Mehwish, Aimal REXTIN, Shamaila HAYAT, Numair KHAN, Muhammad Muddassir MALIK, 2017. Data analysis and call prediction on dyadic data from an understudied population. In: Pervasive and Mobile Computing. 2017, 41, pp. 166-178. ISSN 1574-1192. eISSN 1873-1589. Available under: doi: 10.1016/j.pmcj.2017.08.002
BibTex
@article{Nasim2017-10analy-40818,
  year={2017},
  doi={10.1016/j.pmcj.2017.08.002},
  title={Data analysis and call prediction on dyadic data from an understudied population},
  volume={41},
  issn={1574-1192},
  journal={Pervasive and Mobile Computing},
  pages={166--178},
  author={Nasim, Mehwish and Rextin, Aimal and Hayat, Shamaila and Khan, Numair and Malik, Muhammad Muddassir}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40818">
    <dc:creator>Rextin, Aimal</dc:creator>
    <dc:contributor>Hayat, Shamaila</dc:contributor>
    <dc:creator>Nasim, Mehwish</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Rextin, Aimal</dc:contributor>
    <dc:contributor>Nasim, Mehwish</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40818"/>
    <dc:creator>Hayat, Shamaila</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-01T10:15:56Z</dc:date>
    <dcterms:issued>2017-10</dcterms:issued>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Data analysis and call prediction on dyadic data from an understudied population</dcterms:title>
    <dc:contributor>Malik, Muhammad Muddassir</dc:contributor>
    <dc:contributor>Khan, Numair</dc:contributor>
    <dc:creator>Khan, Numair</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-01T10:15:56Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Malik, Muhammad Muddassir</dc:creator>
    <dcterms:abstract xml:lang="eng">In this paper we predict outgoing mobile phone calls using machine learning and time clusters based approaches. We analyze to which extent the calling activity of mobile phone users is predictable. The premise is that mobile phone users exhibit temporal regularity in their interactions with majority of their contacts. In the sociological context, most social interactions have fairly reliable temporal regularity. If we quantify the extension of this behavior to interactions on mobile phones we expect that pairwise interaction is not merely a result of randomness, rather it exhibits a temporal pattern. To this end, we not only tested our approach on an original mobile phone usage dataset from a developing country, Pakistan, but we also analyzed the famous Reality Mining Dataset and the Nokia Dataset (from a European country), where we found an equitable basis for comparison with our data. Our original data consists of 783 users and more than 12,000 active dyads. Our results show that temporal information about pairwise user interactions can predict future calls with reasonable accuracy.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen