Pattern size in Gaussian fields from spinodal decomposition

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Blömker, Dirk
Wacker, Philipp
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
SIAM Journal on Applied Mathematics. 2017, 77(4), pp. 1292-1319. ISSN 0036-1399. eISSN 1095-712X. Available under: doi: 10.1137/15M1052081
Zusammenfassung

We study the two-dimensional snake-like pattern that arises in phase separation of alloys described by spinodal decomposition in the Cahn-Hilliard model. These are somewhat universal patterns due to an overlay of eigenfunctions of the Laplacian with a similar wave-number. Similar structures appear in other models like reaction-diffusion systems describing animal coats' patterns or vegetation patterns in desertification. Our main result studies random functions given by cosine Fourier series with independent Gaussian coefficients, that dominate the dynamics in the Cahn-Hilliard model. This is not a cosine process, as the sum is taken over domains in Fourier space that not only grow and scale with a parameter of order $1/\varepsilon$, but also move to infinity. Moreover, the model under consideration is neither stationary nor isotropic. To study the pattern size of nodal domains we consider the density of zeros on any straight line through the spatial domain. Using a theorem by Edelman and Kostlan and weighted ergodic theorems that ensure the convergence of the moving sums, we show that the average distance of zeros is asymptotically of order $\varepsilon$ with a precisely given constant.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BIANCHI, Luigi Amedeo, Dirk BLÖMKER, Philipp WACKER, 2017. Pattern size in Gaussian fields from spinodal decomposition. In: SIAM Journal on Applied Mathematics. 2017, 77(4), pp. 1292-1319. ISSN 0036-1399. eISSN 1095-712X. Available under: doi: 10.1137/15M1052081
BibTex
@article{Bianchi2017Patte-45297,
  year={2017},
  doi={10.1137/15M1052081},
  title={Pattern size in Gaussian fields from spinodal decomposition},
  number={4},
  volume={77},
  issn={0036-1399},
  journal={SIAM Journal on Applied Mathematics},
  pages={1292--1319},
  author={Bianchi, Luigi Amedeo and Blömker, Dirk and Wacker, Philipp}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45297">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45297"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">We study the two-dimensional snake-like pattern that arises in phase separation of alloys described by spinodal decomposition in the Cahn-Hilliard model. These are somewhat universal patterns due to an overlay of eigenfunctions of the Laplacian with a similar wave-number. Similar structures appear in other models like reaction-diffusion systems describing animal coats' patterns or vegetation patterns in desertification. Our main result studies random functions given by cosine Fourier series with independent Gaussian coefficients, that dominate the dynamics in the Cahn-Hilliard model. This is not a cosine process, as the sum is taken over domains in Fourier space that not only grow and scale with a parameter of order $1/\varepsilon$, but also move to infinity. Moreover, the model under consideration is neither stationary nor isotropic. To study the pattern size of nodal domains we consider the density of zeros on any straight line through the spatial domain. Using a theorem by Edelman and Kostlan and weighted ergodic theorems that ensure the convergence of the moving sums, we show that the average distance of zeros is asymptotically of order $\varepsilon$ with a precisely given constant.</dcterms:abstract>
    <dc:creator>Blömker, Dirk</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Blömker, Dirk</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-05T09:40:10Z</dc:date>
    <dc:contributor>Wacker, Philipp</dc:contributor>
    <dcterms:title>Pattern size in Gaussian fields from spinodal decomposition</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Bianchi, Luigi Amedeo</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-05T09:40:10Z</dcterms:available>
    <dc:creator>Wacker, Philipp</dc:creator>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Bianchi, Luigi Amedeo</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen