A HJB-POD Approach to the Control of the Level Set Equation

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Alla, Alessandro
Falcone, Maurizio
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
BENNER, Peter, ed. and others. Model Reduction of Parametrized Systems. Cham: Springer, 2017, pp. 317-331. Modeling, simulation & applications. 17. ISBN 978-3-319-58785-1. Available under: doi: 10.1007/978-3-319-58786-8_20
Zusammenfassung

We consider an optimal control problem where the dynamics is given by the propagation of a one-dimensional graph controlled by its normal speed. A target corresponding to the final configuration of the front is given and we want to minimize the cost to reach the target. We want to solve this optimal control problem via the dynamic programming approach but it is well known that these methods suffer from the “curse of dimensionality” so that we can not apply the method to the semi-discrete version of the dynamical system. However, this is made possible by a reduced-order model for the level set equation which is based on Proper Orthogonal Decomposition. This results in a new low-dimensional dynamical system which is sufficient to track the dynamics. By the numerical solution of the Hamilton-Jacobi-Bellman equation related to the POD approximation we can compute the feedback law and the corresponding optimal trajectory for the nonlinear front propagation problem. We discuss some numerical issues of this approach and present a couple of numerical examples.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690ALLA, Alessandro, Giulia FABRINI, Maurizio FALCONE, 2017. A HJB-POD Approach to the Control of the Level Set Equation. In: BENNER, Peter, ed. and others. Model Reduction of Parametrized Systems. Cham: Springer, 2017, pp. 317-331. Modeling, simulation & applications. 17. ISBN 978-3-319-58785-1. Available under: doi: 10.1007/978-3-319-58786-8_20
BibTex
@incollection{Alla2017-09-06HJBPO-42676,
  year={2017},
  doi={10.1007/978-3-319-58786-8_20},
  title={A HJB-POD Approach to the Control of the Level Set Equation},
  number={17},
  isbn={978-3-319-58785-1},
  publisher={Springer},
  address={Cham},
  series={Modeling, simulation & applications},
  booktitle={Model Reduction of Parametrized Systems},
  pages={317--331},
  editor={Benner, Peter},
  author={Alla, Alessandro and Fabrini, Giulia and Falcone, Maurizio}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42676">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-25T09:09:33Z</dc:date>
    <dc:creator>Falcone, Maurizio</dc:creator>
    <dcterms:title>A HJB-POD Approach to the Control of the Level Set Equation</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We consider an optimal control problem where the dynamics is given by the propagation of a one-dimensional graph controlled by its normal speed. A target corresponding to the final configuration of the front is given and we want to minimize the cost to reach the target. We want to solve this optimal control problem via the dynamic programming approach but it is well known that these methods suffer from the “curse of dimensionality” so that we can not apply the method to the semi-discrete version of the dynamical system. However, this is made possible by a reduced-order model for the level set equation which is based on Proper Orthogonal Decomposition. This results in a new low-dimensional dynamical system which is sufficient to track the dynamics. By the numerical solution of the Hamilton-Jacobi-Bellman equation related to the POD approximation we can compute the feedback law and the corresponding optimal trajectory for the nonlinear front propagation problem. We discuss some numerical issues of this approach and present a couple of numerical examples.</dcterms:abstract>
    <dc:creator>Fabrini, Giulia</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42676"/>
    <dc:contributor>Alla, Alessandro</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2017-09-06</dcterms:issued>
    <dc:contributor>Fabrini, Giulia</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-25T09:09:33Z</dcterms:available>
    <dc:creator>Alla, Alessandro</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Falcone, Maurizio</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen