A HJB-POD Approach to the Control of the Level Set Equation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider an optimal control problem where the dynamics is given by the propagation of a one-dimensional graph controlled by its normal speed. A target corresponding to the final configuration of the front is given and we want to minimize the cost to reach the target. We want to solve this optimal control problem via the dynamic programming approach but it is well known that these methods suffer from the “curse of dimensionality” so that we can not apply the method to the semi-discrete version of the dynamical system. However, this is made possible by a reduced-order model for the level set equation which is based on Proper Orthogonal Decomposition. This results in a new low-dimensional dynamical system which is sufficient to track the dynamics. By the numerical solution of the Hamilton-Jacobi-Bellman equation related to the POD approximation we can compute the feedback law and the corresponding optimal trajectory for the nonlinear front propagation problem. We discuss some numerical issues of this approach and present a couple of numerical examples.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ALLA, Alessandro, Giulia FABRINI, Maurizio FALCONE, 2017. A HJB-POD Approach to the Control of the Level Set Equation. In: BENNER, Peter, ed. and others. Model Reduction of Parametrized Systems. Cham: Springer, 2017, pp. 317-331. Modeling, simulation & applications. 17. ISBN 978-3-319-58785-1. Available under: doi: 10.1007/978-3-319-58786-8_20BibTex
@incollection{Alla2017-09-06HJBPO-42676, year={2017}, doi={10.1007/978-3-319-58786-8_20}, title={A HJB-POD Approach to the Control of the Level Set Equation}, number={17}, isbn={978-3-319-58785-1}, publisher={Springer}, address={Cham}, series={Modeling, simulation & applications}, booktitle={Model Reduction of Parametrized Systems}, pages={317--331}, editor={Benner, Peter}, author={Alla, Alessandro and Fabrini, Giulia and Falcone, Maurizio} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42676"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-25T09:09:33Z</dc:date> <dc:creator>Falcone, Maurizio</dc:creator> <dcterms:title>A HJB-POD Approach to the Control of the Level Set Equation</dcterms:title> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We consider an optimal control problem where the dynamics is given by the propagation of a one-dimensional graph controlled by its normal speed. A target corresponding to the final configuration of the front is given and we want to minimize the cost to reach the target. We want to solve this optimal control problem via the dynamic programming approach but it is well known that these methods suffer from the “curse of dimensionality” so that we can not apply the method to the semi-discrete version of the dynamical system. However, this is made possible by a reduced-order model for the level set equation which is based on Proper Orthogonal Decomposition. This results in a new low-dimensional dynamical system which is sufficient to track the dynamics. By the numerical solution of the Hamilton-Jacobi-Bellman equation related to the POD approximation we can compute the feedback law and the corresponding optimal trajectory for the nonlinear front propagation problem. We discuss some numerical issues of this approach and present a couple of numerical examples.</dcterms:abstract> <dc:creator>Fabrini, Giulia</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42676"/> <dc:contributor>Alla, Alessandro</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2017-09-06</dcterms:issued> <dc:contributor>Fabrini, Giulia</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-25T09:09:33Z</dcterms:available> <dc:creator>Alla, Alessandro</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Falcone, Maurizio</dc:contributor> </rdf:Description> </rdf:RDF>