Quasi-Monte Carlo algorithms for diffusion equations in high dimensions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Diffusion equation posed on a high dimensional space may occur as a sub-problem in advection-diffusion problems (see [G. Venkiteswaran, M. Junk, A QMC approach for high dimensional Fokker–Planck equations modelling polymeric liquids, Math. Comput. Simul. 68 (2005) 43–56.] for a specific application). Although the transport part can be dealt with the method of characteristics, the efficient simulation of diffusion in high dimensions is a challenging task. The traditional Monte Carlo method (MC) applied to diffusion problems converges and is N−1/2 accurate, where N is the number of particles. It is well known that for integration, quasi-Monte Carlo (QMC) outperforms Monte Carlo in the sense that one can achieve N−1 convergence, up to a logarithmic factor. This is our starting point to develop methods based on Lécot’s approach [C. Lécot, F.E. Khettabi, Quasi-Monte Carlo simulation of diffusion, Journal of Complexity 15 (1999) 342–359.], which are applicable in high dimensions, with a hope to achieve better speed of convergence. Through a number of numerical experiments we observe that some of the QMC methods not only generalize to high dimensions but also show faster convergence in the results and thus, slightly outperform standard MC.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
VENKITESWARAN, Gopalakrishnan, Michael JUNK, 2005. Quasi-Monte Carlo algorithms for diffusion equations in high dimensions. In: Mathematics and Computers in Simulation. 2005, 68(1), pp. 23-41. ISSN 0378-4754. eISSN 1872-7166. Available under: doi: 10.1016/j.matcom.2004.09.003BibTex
@article{Venkiteswaran2005Quasi-25405, year={2005}, doi={10.1016/j.matcom.2004.09.003}, title={Quasi-Monte Carlo algorithms for diffusion equations in high dimensions}, number={1}, volume={68}, issn={0378-4754}, journal={Mathematics and Computers in Simulation}, pages={23--41}, author={Venkiteswaran, Gopalakrishnan and Junk, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25405"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Venkiteswaran, Gopalakrishnan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-13T10:56:08Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25405"/> <dc:contributor>Junk, Michael</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Junk, Michael</dc:creator> <dc:creator>Venkiteswaran, Gopalakrishnan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-13T10:56:08Z</dcterms:available> <dcterms:bibliographicCitation>Mathematics and Computers in Simulation ; 68 (2005), 1. - S. 23-41</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Diffusion equation posed on a high dimensional space may occur as a sub-problem in advection-diffusion problems (see [G. Venkiteswaran, M. Junk, A QMC approach for high dimensional Fokker–Planck equations modelling polymeric liquids, Math. Comput. Simul. 68 (2005) 43–56.] for a specific application). Although the transport part can be dealt with the method of characteristics, the efficient simulation of diffusion in high dimensions is a challenging task. The traditional Monte Carlo method (MC) applied to diffusion problems converges and is N<sup>−1/2</sup> accurate, where N is the number of particles. It is well known that for integration, quasi-Monte Carlo (QMC) outperforms Monte Carlo in the sense that one can achieve N<sup>−1</sup> convergence, up to a logarithmic factor. This is our starting point to develop methods based on Lécot’s approach [C. Lécot, F.E. Khettabi, Quasi-Monte Carlo simulation of diffusion, Journal of Complexity 15 (1999) 342–359.], which are applicable in high dimensions, with a hope to achieve better speed of convergence. Through a number of numerical experiments we observe that some of the QMC methods not only generalize to high dimensions but also show faster convergence in the results and thus, slightly outperform standard MC.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Quasi-Monte Carlo algorithms for diffusion equations in high dimensions</dcterms:title> <dcterms:issued>2005</dcterms:issued> </rdf:Description> </rdf:RDF>