Quasi-Monte Carlo algorithms for diffusion equations in high dimensions
Quasi-Monte Carlo algorithms for diffusion equations in high dimensions
No Thumbnail Available
Files
There are no files associated with this item.
Date
2005
Authors
Venkiteswaran, Gopalakrishnan
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Mathematics and Computers in Simulation ; 68 (2005), 1. - pp. 23-41. - ISSN 0378-4754. - eISSN 1872-7166
Abstract
Diffusion equation posed on a high dimensional space may occur as a sub-problem in advection-diffusion problems (see [G. Venkiteswaran, M. Junk, A QMC approach for high dimensional Fokker–Planck equations modelling polymeric liquids, Math. Comput. Simul. 68 (2005) 43–56.] for a specific application). Although the transport part can be dealt with the method of characteristics, the efficient simulation of diffusion in high dimensions is a challenging task. The traditional Monte Carlo method (MC) applied to diffusion problems converges and is N−1/2 accurate, where N is the number of particles. It is well known that for integration, quasi-Monte Carlo (QMC) outperforms Monte Carlo in the sense that one can achieve N−1 convergence, up to a logarithmic factor. This is our starting point to develop methods based on Lécot’s approach [C. Lécot, F.E. Khettabi, Quasi-Monte Carlo simulation of diffusion, Journal of Complexity 15 (1999) 342–359.], which are applicable in high dimensions, with a hope to achieve better speed of convergence. Through a number of numerical experiments we observe that some of the QMC methods not only generalize to high dimensions but also show faster convergence in the results and thus, slightly outperform standard MC.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
VENKITESWARAN, Gopalakrishnan, Michael JUNK, 2005. Quasi-Monte Carlo algorithms for diffusion equations in high dimensions. In: Mathematics and Computers in Simulation. 68(1), pp. 23-41. ISSN 0378-4754. eISSN 1872-7166. Available under: doi: 10.1016/j.matcom.2004.09.003BibTex
@article{Venkiteswaran2005Quasi-25405, year={2005}, doi={10.1016/j.matcom.2004.09.003}, title={Quasi-Monte Carlo algorithms for diffusion equations in high dimensions}, number={1}, volume={68}, issn={0378-4754}, journal={Mathematics and Computers in Simulation}, pages={23--41}, author={Venkiteswaran, Gopalakrishnan and Junk, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25405"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Venkiteswaran, Gopalakrishnan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-13T10:56:08Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25405"/> <dc:contributor>Junk, Michael</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Junk, Michael</dc:creator> <dc:creator>Venkiteswaran, Gopalakrishnan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-13T10:56:08Z</dcterms:available> <dcterms:bibliographicCitation>Mathematics and Computers in Simulation ; 68 (2005), 1. - S. 23-41</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Diffusion equation posed on a high dimensional space may occur as a sub-problem in advection-diffusion problems (see [G. Venkiteswaran, M. Junk, A QMC approach for high dimensional Fokker–Planck equations modelling polymeric liquids, Math. Comput. Simul. 68 (2005) 43–56.] for a specific application). Although the transport part can be dealt with the method of characteristics, the efficient simulation of diffusion in high dimensions is a challenging task. The traditional Monte Carlo method (MC) applied to diffusion problems converges and is N<sup>−1/2</sup> accurate, where N is the number of particles. It is well known that for integration, quasi-Monte Carlo (QMC) outperforms Monte Carlo in the sense that one can achieve N<sup>−1</sup> convergence, up to a logarithmic factor. This is our starting point to develop methods based on Lécot’s approach [C. Lécot, F.E. Khettabi, Quasi-Monte Carlo simulation of diffusion, Journal of Complexity 15 (1999) 342–359.], which are applicable in high dimensions, with a hope to achieve better speed of convergence. Through a number of numerical experiments we observe that some of the QMC methods not only generalize to high dimensions but also show faster convergence in the results and thus, slightly outperform standard MC.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Quasi-Monte Carlo algorithms for diffusion equations in high dimensions</dcterms:title> <dcterms:issued>2005</dcterms:issued> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes