Composing noun phrase vector representations

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
de Paiva, Valeria
Crouch, Richard
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
AUGENSTEIN, Isabelle, ed. and others. The 4th Workshop on Representation Learning for NLP (RepL4NLP-2019) - proceedings of the workshop : August 2, 2019, Florence, Italy : ACL 2019. Stroudsburg, PA: Association for Computational Linguistics (ACL), 2019, pp. 84-95. ISBN 978-1-950737-35-2. Available under: doi: 10.18653/v1/W19-4311
Zusammenfassung

Vector representations of words have seen an increasing success over the past years in a variety of NLP tasks. While there seems to be a consensus about the usefulness of word embeddings and how to learn them, it is still unclear which representations can capture the meaning of phrases or even whole sentences. Recent work has shown that simple operations outperform more complex deep architectures. In this work, we propose two novel constraints for computing noun phrase vector representations. First, we propose that the semantic and not the syntactic contribution of each component of a noun phrase should be considered, so that the resulting composed vectors express more of the phrase meaning. Second, the composition process of the two phrase vectors should apply suitable dimensions’ selection in a way that specific semantic features captured by the phrase’s meaning become more salient. Our proposed methods are compared to 11 other approaches, including popular baselines and a neural net architecture, and are evaluated across 6 tasks and 2 datasets. Our results show that these constraints lead to more expressive phrase representations and can be applied to other state-of-the-art methods to improve their performance.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
400 Sprachwissenschaft, Linguistik
Schlagwörter
Konferenz
4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 2. Aug. 2019, Florence, Italy
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KALOULI, Aikaterini-Lida, Valeria DE PAIVA, Richard CROUCH, 2019. Composing noun phrase vector representations. 4th Workshop on Representation Learning for NLP (RepL4NLP-2019). Florence, Italy, 2. Aug. 2019. In: AUGENSTEIN, Isabelle, ed. and others. The 4th Workshop on Representation Learning for NLP (RepL4NLP-2019) - proceedings of the workshop : August 2, 2019, Florence, Italy : ACL 2019. Stroudsburg, PA: Association for Computational Linguistics (ACL), 2019, pp. 84-95. ISBN 978-1-950737-35-2. Available under: doi: 10.18653/v1/W19-4311
BibTex
@inproceedings{Kalouli2019Compo-51135,
  year={2019},
  doi={10.18653/v1/W19-4311},
  title={Composing noun phrase vector representations},
  url={https://www.aclweb.org/anthology/W19-4311.pdf},
  isbn={978-1-950737-35-2},
  publisher={Association for Computational Linguistics (ACL)},
  address={Stroudsburg, PA},
  booktitle={The 4th Workshop on Representation Learning for NLP (RepL4NLP-2019) - proceedings of the workshop : August 2, 2019, Florence, Italy : ACL 2019},
  pages={84--95},
  editor={Augenstein, Isabelle},
  author={Kalouli, Aikaterini-Lida and de Paiva, Valeria and Crouch, Richard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51135">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51135"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:title>Composing noun phrase vector representations</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Crouch, Richard</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-30T09:11:17Z</dcterms:available>
    <dc:creator>de Paiva, Valeria</dc:creator>
    <dc:creator>Kalouli, Aikaterini-Lida</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-30T09:11:17Z</dc:date>
    <dc:contributor>de Paiva, Valeria</dc:contributor>
    <dc:contributor>Kalouli, Aikaterini-Lida</dc:contributor>
    <dc:creator>Crouch, Richard</dc:creator>
    <dcterms:abstract xml:lang="eng">Vector representations of words have seen an increasing success over the past years in a variety of NLP tasks. While there seems to be a consensus about the usefulness of word embeddings and how to learn them, it is still unclear which representations can capture the meaning of phrases or even whole sentences. Recent work has shown that simple operations outperform more complex deep architectures. In this work, we propose two novel constraints for computing noun phrase vector representations. First, we propose that the semantic and not the syntactic contribution of each component of a noun phrase should be considered, so that the resulting composed vectors express more of the phrase meaning. Second, the composition process of the two phrase vectors should apply suitable dimensions’ selection in a way that specific semantic features captured by the phrase’s meaning become more salient. Our proposed methods are compared to 11 other approaches, including popular baselines and a neural net architecture, and are evaluated across 6 tasks and 2 datasets. Our results show that these constraints lead to more expressive phrase representations and can be applied to other state-of-the-art methods to improve their performance.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2020-09-30
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen