Nonlocal Patch-Based Label Fusion for Hippocampus Segmentation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Quantitative magnetic resonance analysis often requires accurate, robust and reliable automatic extraction of anatomical structures. Recently, template-warping methods incorporating a label fusion strategy have demonstrated high accuracy in segmenting cerebral structures. In this study, we propose a novel patch-based method using expert segmentation priors to achieve this task. Inspired by recent work in image denoising, the proposed nonlocal patch-based label fusion produces accurate and robust segmentation. During our experiments, the hippocampi of 80 healthy subjects were segmented. The influence on segmentation accuracy of different parameters such as patch size or number of training subjects was also studied. Moreover, a comparison with an appearance-based method and a template-based method was carried out. The highest median kappa value obtained with the proposed method was 0.884, which is competitive compared with recently published methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
COUPÉ, Pierrick, José V. MANJÓN, Vladimir FONOV, Jens C. PRUESSNER, Montserrat ROBLES, D. Louis COLLINS, 2010. Nonlocal Patch-Based Label Fusion for Hippocampus Segmentation. MICCAI 2010. Beijing, China, 20. Sept. 2010 - 24. Sept. 2010. In: JIANG, Tianzi, ed. and others. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010, 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part III. Berlin: Springer, 2010, pp. 129-136. Lecture Notes in Computer Science. 6363. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-642-15710-3. Available under: doi: 10.1007/978-3-642-15711-0_17BibTex
@inproceedings{Coupe2010Nonlo-40994, year={2010}, doi={10.1007/978-3-642-15711-0_17}, title={Nonlocal Patch-Based Label Fusion for Hippocampus Segmentation}, number={6363}, isbn={978-3-642-15710-3}, issn={0302-9743}, publisher={Springer}, address={Berlin}, series={Lecture Notes in Computer Science}, booktitle={Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010, 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part III}, pages={129--136}, editor={Jiang, Tianzi}, author={Coupé, Pierrick and Manjón, José V. and Fonov, Vladimir and Pruessner, Jens C. and Robles, Montserrat and Collins, D. Louis} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40994"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Quantitative magnetic resonance analysis often requires accurate, robust and reliable automatic extraction of anatomical structures. Recently, template-warping methods incorporating a label fusion strategy have demonstrated high accuracy in segmenting cerebral structures. In this study, we propose a novel patch-based method using expert segmentation priors to achieve this task. Inspired by recent work in image denoising, the proposed nonlocal patch-based label fusion produces accurate and robust segmentation. During our experiments, the hippocampi of 80 healthy subjects were segmented. The influence on segmentation accuracy of different parameters such as patch size or number of training subjects was also studied. Moreover, a comparison with an appearance-based method and a template-based method was carried out. The highest median kappa value obtained with the proposed method was 0.884, which is competitive compared with recently published methods.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40994"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:contributor>Pruessner, Jens C.</dc:contributor> <dc:creator>Pruessner, Jens C.</dc:creator> <dc:creator>Collins, D. Louis</dc:creator> <dcterms:title>Nonlocal Patch-Based Label Fusion for Hippocampus Segmentation</dcterms:title> <dc:contributor>Collins, D. Louis</dc:contributor> <dc:contributor>Coupé, Pierrick</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-21T08:26:33Z</dc:date> <dc:creator>Manjón, José V.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-21T08:26:33Z</dcterms:available> <dc:contributor>Fonov, Vladimir</dc:contributor> <dcterms:issued>2010</dcterms:issued> <dc:creator>Robles, Montserrat</dc:creator> <dc:contributor>Robles, Montserrat</dc:contributor> <dc:contributor>Manjón, José V.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Coupé, Pierrick</dc:creator> <dc:creator>Fonov, Vladimir</dc:creator> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>