Publikation: On a class of M-estimators for Gaussian long-memory models
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider estimation for parametric stationary Gaussian models with long memory. The spectral density f(x; θ) is assumed to be characterised by a vector θ = (θ1, θ2, θ3,…, θm) such that θ2 = H ε (½, 1) and f(x; θ) is proportional to x1−2H as x tends to zero. An approximate maximum likelihood estimator based on the autoregressive representation of the process is proposed. Its asymptotic distribution is derived. More generally, the approach leads to a class of M-estimators for which a central limit theorem holds. By choosing an appropriate ψ-function, robustness against additive outliers can be achieved, while keeping high efficiency under the ideal model. This is illustrated by a small simulation study. A simple algorithm and an explicit formula for the efficiency, and thus for choosing an appropriate tuning parameter, are given for Hampel's redescending ψ-function.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERAN, Jan, 1994. On a class of M-estimators for Gaussian long-memory models. In: Biometrika. 1994, 81(4), pp. 755-766. ISSN 0006-3444. Available under: doi: 10.1093/biomet/81.4.755BibTex
@article{Beran1994class-18822, year={1994}, doi={10.1093/biomet/81.4.755}, title={On a class of M-estimators for Gaussian long-memory models}, number={4}, volume={81}, issn={0006-3444}, journal={Biometrika}, pages={755--766}, author={Beran, Jan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18822"> <dcterms:abstract xml:lang="eng">We consider estimation for parametric stationary Gaussian models with long memory. The spectral density f(x; θ) is assumed to be characterised by a vector θ = (θ1, θ2, θ3,…, θm) such that θ2 = H ε (½, 1) and f(x; θ) is proportional to x1−2H as x tends to zero. An approximate maximum likelihood estimator based on the autoregressive representation of the process is proposed. Its asymptotic distribution is derived. More generally, the approach leads to a class of M-estimators for which a central limit theorem holds. By choosing an appropriate ψ-function, robustness against additive outliers can be achieved, while keeping high efficiency under the ideal model. This is illustrated by a small simulation study. A simple algorithm and an explicit formula for the efficiency, and thus for choosing an appropriate tuning parameter, are given for Hampel's redescending ψ-function.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18822"/> <dc:contributor>Beran, Jan</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-22T07:11:28Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>Publ. in: Biometrika ; 81 (1994), 4. - S. 755-766</dcterms:bibliographicCitation> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-22T07:11:28Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:creator>Beran, Jan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>On a class of M-estimators for Gaussian long-memory models</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>1994</dcterms:issued> </rdf:Description> </rdf:RDF>