Publikation:

On a class of M-estimators for Gaussian long-memory models

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

1994

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Biometrika. 1994, 81(4), pp. 755-766. ISSN 0006-3444. Available under: doi: 10.1093/biomet/81.4.755

Zusammenfassung

We consider estimation for parametric stationary Gaussian models with long memory. The spectral density f(x; θ) is assumed to be characterised by a vector θ = (θ1, θ2, θ3,…, θm) such that θ2 = H ε (½, 1) and f(x; θ) is proportional to x1−2H as x tends to zero. An approximate maximum likelihood estimator based on the autoregressive representation of the process is proposed. Its asymptotic distribution is derived. More generally, the approach leads to a class of M-estimators for which a central limit theorem holds. By choosing an appropriate ψ-function, robustness against additive outliers can be achieved, while keeping high efficiency under the ideal model. This is illustrated by a small simulation study. A simple algorithm and an explicit formula for the efficiency, and thus for choosing an appropriate tuning parameter, are given for Hampel's redescending ψ-function.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Autoregressive, Fractional ARIMA, Influence function, Long-range dependence, Maximum likelihood estimation, Redescending function, Robustness

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690BERAN, Jan, 1994. On a class of M-estimators for Gaussian long-memory models. In: Biometrika. 1994, 81(4), pp. 755-766. ISSN 0006-3444. Available under: doi: 10.1093/biomet/81.4.755
BibTex
@article{Beran1994class-18822,
  year={1994},
  doi={10.1093/biomet/81.4.755},
  title={On a class of M-estimators for Gaussian long-memory models},
  number={4},
  volume={81},
  issn={0006-3444},
  journal={Biometrika},
  pages={755--766},
  author={Beran, Jan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18822">
    <dcterms:abstract xml:lang="eng">We consider estimation for parametric stationary Gaussian models with long memory. The spectral density f(x; θ) is assumed to be characterised by a vector θ = (θ1, θ2, θ3,…, θm) such that θ2 = H ε (½, 1) and f(x; θ) is proportional to x1−2H as x tends to zero. An approximate maximum likelihood estimator based on the autoregressive representation of the process is proposed. Its asymptotic distribution is derived. More generally, the approach leads to a class of M-estimators for which a central limit theorem holds. By choosing an appropriate ψ-function, robustness against additive outliers can be achieved, while keeping high efficiency under the ideal model. This is illustrated by a small simulation study. A simple algorithm and an explicit formula for the efficiency, and thus for choosing an appropriate tuning parameter, are given for Hampel's redescending ψ-function.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18822"/>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-22T07:11:28Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>Publ. in: Biometrika ; 81 (1994), 4. - S. 755-766</dcterms:bibliographicCitation>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-22T07:11:28Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Beran, Jan</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>On a class of M-estimators for Gaussian long-memory models</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>1994</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen