Publikation:

Optimization approaches to quadrature : new characterizations of Gaussian quadrature on the line and quadrature with few nodes on plane algebraic curves, on the plane and in higher dimensions

Lade...
Vorschaubild

Dateien

Riener_0-352367.pdf
Riener_0-352367.pdfGröße: 405.38 KBDownloads: 289

Datum

2016

Autor:innen

Riener, Cordian
Schweighofer, Markus

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Submitted

Wird erscheinen in

Zusammenfassung

Let d and k be positive integers. Let μ be a positive Borel measure on R2 possessing moments up to degree 2d−1. If the support of μ is contained in an algebraic curve of degree k, then we show that there exists a quadrature rule for μ with at most dk many nodes all placed on the curve (and positive weights) that is exact on all polynomials of degree at most 2d−1. This generalizes both Gauss and (the odd degree case of) Szegö quadrature where the curve is a line and a circle, respectively, to arbitrary plane algebraic curves. We use this result to show that, without any hypothesis on the support of μ, there is always a cubature rule for μ with at most 3/2d(d−1)+1 many nodes. In both results, we show that the quadrature or cubature rule can be chosen such that its value on a certain positive definite form of degree 2d is minimized. We characterize the unique Gaussian quadrature rule on the line as the one that minimizes this value or several other values as for example the maximum distance of a node to the origin. The tools we develop should prove useful for obtaining similar results in higher-dimensional cases although at the present stage we can present only partial results in that direction.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

quadrature, cubature, Gauss quadrature, Szegö quadrature, plane algebraic curves, truncated moment problem

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690
BibTex
RDF

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2018-03-08 10:49:43
1*
2016-09-05 13:52:48
* Ausgewählte Version