Experimental quantum speed-up in reinforcement learning agents
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
As the field of artificial intelligence advances, the demand for algorithms that can learn quickly and efficiently increases. An important paradigm within artificial intelligence is reinforcement learning1, where decision-making entities called agents interact with environments and learn by updating their behaviour on the basis of the obtained feedback. The crucial question for practical applications is how fast agents learn2. Although various studies have made use of quantum mechanics to speed up the agent’s decision-making process3,4, a reduction in learning time has not yet been demonstrated. Here we present a reinforcement learning experiment in which the learning process of an agent is sped up by using a quantum communication channel with the environment. We further show that combining this scenario with classical communication enables the evaluation of this improvement and allows optimal control of the learning progress. We implement this learning protocol on a compact and fully tunable integrated nanophotonic processor. The device interfaces with telecommunication-wavelength photons and features a fast active-feedback mechanism, demonstrating the agent’s systematic quantum advantage in a setup that could readily be integrated within future large-scale quantum communication networks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SAGGIO, Valeria, Beate E. ASENBECK, Arne HAMANN, Teodor STRÖMBERG, Peter SCHIANSKY, Vedran DUNJKO, Nicolai FRIIS, Nicholas C. HARRIS, Hans J. BRIEGEL, Philip WALTHER, 2021. Experimental quantum speed-up in reinforcement learning agents. In: Nature. Springer Nature. 2021, 591(7849), pp. 229-233. ISSN 0028-0836. eISSN 1476-4687. Available under: doi: 10.1038/s41586-021-03242-7BibTex
@article{Saggio2021-03Exper-53255, year={2021}, doi={10.1038/s41586-021-03242-7}, title={Experimental quantum speed-up in reinforcement learning agents}, number={7849}, volume={591}, issn={0028-0836}, journal={Nature}, pages={229--233}, author={Saggio, Valeria and Asenbeck, Beate E. and Hamann, Arne and Strömberg, Teodor and Schiansky, Peter and Dunjko, Vedran and Friis, Nicolai and Harris, Nicholas C. and Briegel, Hans J. and Walther, Philip} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53255"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:contributor>Harris, Nicholas C.</dc:contributor> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-25T08:32:09Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Saggio, Valeria</dc:creator> <dc:contributor>Hamann, Arne</dc:contributor> <dc:creator>Hamann, Arne</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-25T08:32:09Z</dcterms:available> <dc:contributor>Dunjko, Vedran</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53255"/> <dc:creator>Briegel, Hans J.</dc:creator> <dc:contributor>Briegel, Hans J.</dc:contributor> <dc:creator>Harris, Nicholas C.</dc:creator> <dc:contributor>Saggio, Valeria</dc:contributor> <dc:creator>Dunjko, Vedran</dc:creator> <dc:creator>Friis, Nicolai</dc:creator> <dc:creator>Asenbeck, Beate E.</dc:creator> <dc:creator>Schiansky, Peter</dc:creator> <dc:contributor>Asenbeck, Beate E.</dc:contributor> <dcterms:issued>2021-03</dcterms:issued> <dc:contributor>Strömberg, Teodor</dc:contributor> <dc:contributor>Schiansky, Peter</dc:contributor> <dc:creator>Strömberg, Teodor</dc:creator> <dc:creator>Walther, Philip</dc:creator> <dc:contributor>Walther, Philip</dc:contributor> <dcterms:title>Experimental quantum speed-up in reinforcement learning agents</dcterms:title> <dc:contributor>Friis, Nicolai</dc:contributor> <dcterms:abstract xml:lang="eng">As the field of artificial intelligence advances, the demand for algorithms that can learn quickly and efficiently increases. An important paradigm within artificial intelligence is reinforcement learning1, where decision-making entities called agents interact with environments and learn by updating their behaviour on the basis of the obtained feedback. The crucial question for practical applications is how fast agents learn2. Although various studies have made use of quantum mechanics to speed up the agent’s decision-making process3,4, a reduction in learning time has not yet been demonstrated. Here we present a reinforcement learning experiment in which the learning process of an agent is sped up by using a quantum communication channel with the environment. We further show that combining this scenario with classical communication enables the evaluation of this improvement and allows optimal control of the learning progress. We implement this learning protocol on a compact and fully tunable integrated nanophotonic processor. The device interfaces with telecommunication-wavelength photons and features a fast active-feedback mechanism, demonstrating the agent’s systematic quantum advantage in a setup that could readily be integrated within future large-scale quantum communication networks.</dcterms:abstract> </rdf:Description> </rdf:RDF>