ExpLIMEable : A Visual Analytics Approach for Exploring LIME
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We introduce ExpLIMEable for enhancing the understanding of Local Interpretable Model-Agnostic Explanations (LIME), with a focus on medical image analysis. LIME is a popular and widely used method in explainable artificial intelligence (XAI) that provides locally faithful and interpretable post-hoc explanations for black box models. However, LIME explanations are not always robust due to variations in perturbation techniques and the selection of interpretable functions. The proposed visual analytics application aims to address these concerns by enabling the users to freely explore and compare the explanations generated by different LIME parameter instances. The application utilizes a convolutional neural network (CNN) for brain MRI tumor classification and allows users to customize post-hoc LIME parameters to gain insights into the model’s decision-making process. The developed application assists machine learning developers in understanding the limitations of LIME and its sensitivity to different parameters, as well as the doctors in providing an explanation to machine learning models, enabling more informed decision-making, with the ultimate goal of improving its robustness and explanation quality.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LAGUNA, Sonia, Julian N. HEIDENREICH, Jiugeng SUN, Nilüfer CETIN, Ibrahim AL-HAZWANI, Udo SCHLEGEL, Furui CHENG, Mennatallah EL-ASSADY, 2023. ExpLIMEable : A Visual Analytics Approach for Exploring LIME. 2023 Workshop on Visual Analytics in Healthcare (VAHC). Melbourne, Australia, 22. Okt. 2024 - 22. Okt. 2023. In: 2023 IEEE Workshop on Visual Analytics in Healthcare : VAHC 2023 : Proceedings. Los Alamitos, CA.: IEEE, 2023, pp. 27-33. ISBN 979-8-3503-3024-3. Available under: doi: 10.1109/vahc60858.2023.00011BibTex
@inproceedings{Laguna2023-10-22ExpLI-68980, year={2023}, doi={10.1109/vahc60858.2023.00011}, title={ExpLIMEable : A Visual Analytics Approach for Exploring LIME}, isbn={979-8-3503-3024-3}, publisher={IEEE}, address={Los Alamitos, CA.}, booktitle={2023 IEEE Workshop on Visual Analytics in Healthcare : VAHC 2023 : Proceedings}, pages={27--33}, author={Laguna, Sonia and Heidenreich, Julian N. and Sun, Jiugeng and Cetin, Nilüfer and Al-Hazwani, Ibrahim and Schlegel, Udo and Cheng, Furui and El-Assady, Mennatallah} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68980"> <dc:language>eng</dc:language> <dc:contributor>Cheng, Furui</dc:contributor> <dc:contributor>Heidenreich, Julian N.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68980"/> <dcterms:issued>2023-10-22</dcterms:issued> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:creator>Heidenreich, Julian N.</dc:creator> <dc:creator>Al-Hazwani, Ibrahim</dc:creator> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dc:creator>Schlegel, Udo</dc:creator> <dcterms:title>ExpLIMEable : A Visual Analytics Approach for Exploring LIME</dcterms:title> <dc:creator>Sun, Jiugeng</dc:creator> <dc:contributor>Al-Hazwani, Ibrahim</dc:contributor> <dc:contributor>Sun, Jiugeng</dc:contributor> <dcterms:abstract>We introduce ExpLIMEable for enhancing the understanding of Local Interpretable Model-Agnostic Explanations (LIME), with a focus on medical image analysis. LIME is a popular and widely used method in explainable artificial intelligence (XAI) that provides locally faithful and interpretable post-hoc explanations for black box models. However, LIME explanations are not always robust due to variations in perturbation techniques and the selection of interpretable functions. The proposed visual analytics application aims to address these concerns by enabling the users to freely explore and compare the explanations generated by different LIME parameter instances. The application utilizes a convolutional neural network (CNN) for brain MRI tumor classification and allows users to customize post-hoc LIME parameters to gain insights into the model’s decision-making process. The developed application assists machine learning developers in understanding the limitations of LIME and its sensitivity to different parameters, as well as the doctors in providing an explanation to machine learning models, enabling more informed decision-making, with the ultimate goal of improving its robustness and explanation quality.</dcterms:abstract> <dc:contributor>Cetin, Nilüfer</dc:contributor> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-09T11:24:44Z</dc:date> <dc:creator>Laguna, Sonia</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-09T11:24:44Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Cetin, Nilüfer</dc:creator> <dc:creator>Cheng, Furui</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Laguna, Sonia</dc:contributor> </rdf:Description> </rdf:RDF>