Publikation:

ExpLIMEable : A Visual Analytics Approach for Exploring LIME

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2023

Autor:innen

Laguna, Sonia
Heidenreich, Julian N.
Sun, Jiugeng
Cetin, Nilüfer
Al-Hazwani, Ibrahim
Cheng, Furui

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2023 IEEE Workshop on Visual Analytics in Healthcare : VAHC 2023 : Proceedings. Los Alamitos, CA.: IEEE, 2023, pp. 27-33. ISBN 979-8-3503-3024-3. Available under: doi: 10.1109/vahc60858.2023.00011

Zusammenfassung

We introduce ExpLIMEable for enhancing the understanding of Local Interpretable Model-Agnostic Explanations (LIME), with a focus on medical image analysis. LIME is a popular and widely used method in explainable artificial intelligence (XAI) that provides locally faithful and interpretable post-hoc explanations for black box models. However, LIME explanations are not always robust due to variations in perturbation techniques and the selection of interpretable functions. The proposed visual analytics application aims to address these concerns by enabling the users to freely explore and compare the explanations generated by different LIME parameter instances. The application utilizes a convolutional neural network (CNN) for brain MRI tumor classification and allows users to customize post-hoc LIME parameters to gain insights into the model’s decision-making process. The developed application assists machine learning developers in understanding the limitations of LIME and its sensitivity to different parameters, as well as the doctors in providing an explanation to machine learning models, enabling more informed decision-making, with the ultimate goal of improving its robustness and explanation quality.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2023 Workshop on Visual Analytics in Healthcare (VAHC), 22. Okt. 2024 - 22. Okt. 2023, Melbourne, Australia
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LAGUNA, Sonia, Julian N. HEIDENREICH, Jiugeng SUN, Nilüfer CETIN, Ibrahim AL-HAZWANI, Udo SCHLEGEL, Furui CHENG, Mennatallah EL-ASSADY, 2023. ExpLIMEable : A Visual Analytics Approach for Exploring LIME. 2023 Workshop on Visual Analytics in Healthcare (VAHC). Melbourne, Australia, 22. Okt. 2024 - 22. Okt. 2023. In: 2023 IEEE Workshop on Visual Analytics in Healthcare : VAHC 2023 : Proceedings. Los Alamitos, CA.: IEEE, 2023, pp. 27-33. ISBN 979-8-3503-3024-3. Available under: doi: 10.1109/vahc60858.2023.00011
BibTex
@inproceedings{Laguna2023-10-22ExpLI-68980,
  year={2023},
  doi={10.1109/vahc60858.2023.00011},
  title={ExpLIMEable : A Visual Analytics Approach for Exploring LIME},
  isbn={979-8-3503-3024-3},
  publisher={IEEE},
  address={Los Alamitos, CA.},
  booktitle={2023 IEEE Workshop on Visual Analytics in Healthcare : VAHC 2023 : Proceedings},
  pages={27--33},
  author={Laguna, Sonia and Heidenreich, Julian N. and Sun, Jiugeng and Cetin, Nilüfer and Al-Hazwani, Ibrahim and Schlegel, Udo and Cheng, Furui and El-Assady, Mennatallah}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68980">
    <dc:language>eng</dc:language>
    <dc:contributor>Cheng, Furui</dc:contributor>
    <dc:contributor>Heidenreich, Julian N.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68980"/>
    <dcterms:issued>2023-10-22</dcterms:issued>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dc:creator>Heidenreich, Julian N.</dc:creator>
    <dc:creator>Al-Hazwani, Ibrahim</dc:creator>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dcterms:title>ExpLIMEable : A Visual Analytics Approach for Exploring LIME</dcterms:title>
    <dc:creator>Sun, Jiugeng</dc:creator>
    <dc:contributor>Al-Hazwani, Ibrahim</dc:contributor>
    <dc:contributor>Sun, Jiugeng</dc:contributor>
    <dcterms:abstract>We introduce ExpLIMEable for enhancing the understanding of Local Interpretable Model-Agnostic Explanations (LIME), with a focus on medical image analysis. LIME is a popular and widely used method in explainable artificial intelligence (XAI) that provides locally faithful and interpretable post-hoc explanations for black box models. However, LIME explanations are not always robust due to variations in perturbation techniques and the selection of interpretable functions. The proposed visual analytics application aims to address these concerns by enabling the users to freely explore and compare the explanations generated by different LIME parameter instances. The application utilizes a convolutional neural network (CNN) for brain MRI tumor classification and allows users to customize post-hoc LIME parameters to gain insights into the model’s decision-making process. The developed application assists machine learning developers in understanding the limitations of LIME and its sensitivity to different parameters, as well as the doctors in providing an explanation to machine learning models, enabling more informed decision-making, with the ultimate goal of improving its robustness and explanation quality.</dcterms:abstract>
    <dc:contributor>Cetin, Nilüfer</dc:contributor>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-09T11:24:44Z</dc:date>
    <dc:creator>Laguna, Sonia</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-09T11:24:44Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Cetin, Nilüfer</dc:creator>
    <dc:creator>Cheng, Furui</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Laguna, Sonia</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen