Publikation:

Phylogenomic analyses of KCNA gene clusters in vertebrates : why do gene clusters stay intact?

Lade...
Vorschaubild

Dateien

1190812287_217.pdf
1190812287_217.pdfGröße: 407.61 KBDownloads: 542

Datum

2007

Autor:innen

Hoegg, Simone

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

BMC Evolutionary Biology. 2007, 7(139), pp. 1-12. ISSN 1471-2148. eISSN 1471-2148. Available under: doi: 10.1186/1471-2148-7-139

Zusammenfassung

Background
Gene clusters are of interest for the understanding of genome evolution since they provide insight in large-scale duplications events as well as patterns of individual gene losses. Vertebrates tend to have multiple copies of gene clusters that typically are only single clusters or are not present at all in genomes of invertebrates. We investigated the genomic architecture and conserved non-coding sequences of vertebrate KCNA gene clusters. KCNA genes encode shaker-related voltage-gated potassium channels and are arranged in two three-gene clusters in tetrapods. Teleost fish are found to possess four clusters. The two tetrapod KNCA clusters are of approximately the same age as the Hox gene clusters that arose through duplications early in vertebrate evolution. For some genes, their conserved retention and arrangement in clusters are thought to be related to regulatory elements in the intergenic regions, which might prevent rearrangements and gene loss. Interestingly, this hypothesis does not appear to apply to the KCNA clusters, as too few conserved putative regulatory elements are retained.

Results
We obtained KCNA coding sequences from basal ray-finned fishes (sturgeon, gar, bowfin) and confirmed that the duplication of these genes is specific to teleosts and therefore consistent with the fish-specific genome duplication (FSGD). Phylogenetic analyses of the genes suggest a basal position of the only intron containing KCNA gene in vertebrates (KCNA7). Sistergroup relationships of KCNA1/2 and KCNA3/6 support that a large-scale duplication gave rise to the two clusters found in the genome of tetrapods. We analyzed the intergenic regions of KCNA clusters in vertebrates and found that there are only a few conserved sequences shared between tetrapods and teleosts or between paralogous clusters. The orthologous teleost clusters, however, show sequence conservation in these regions.

Conclusion
The lack of overall conserved sequences in intergenic regions suggests that there are either other processes than regulatory evolution leading to cluster conservation or that the ancestral regulatory relationships among genes in KCNA clusters have been changed together with their regulatory sites.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
590 Tiere (Zoologie)

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690HOEGG, Simone, Axel MEYER, 2007. Phylogenomic analyses of KCNA gene clusters in vertebrates : why do gene clusters stay intact?. In: BMC Evolutionary Biology. 2007, 7(139), pp. 1-12. ISSN 1471-2148. eISSN 1471-2148. Available under: doi: 10.1186/1471-2148-7-139
BibTex
@article{Hoegg2007Phylo-6884,
  year={2007},
  doi={10.1186/1471-2148-7-139},
  title={Phylogenomic analyses of KCNA gene clusters in vertebrates : why do gene clusters stay intact?},
  number={139},
  volume={7},
  issn={1471-2148},
  journal={BMC Evolutionary Biology},
  pages={1--12},
  author={Hoegg, Simone and Meyer, Axel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6884">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6884/1/1190812287_217.pdf"/>
    <dc:contributor>Hoegg, Simone</dc:contributor>
    <dcterms:issued>2007</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6884"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6884/1/1190812287_217.pdf"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Meyer, Axel</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:creator>Meyer, Axel</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Hoegg, Simone</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:29:53Z</dc:date>
    <dcterms:title>Phylogenomic analyses of KCNA gene clusters in vertebrates : why do gene clusters stay intact?</dcterms:title>
    <dcterms:bibliographicCitation>First publ. in: BMC Evolutionary Biology 7 (2007), 139, pp. 1-12</dcterms:bibliographicCitation>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">Background&lt;br /&gt;Gene clusters are of interest for the understanding of genome evolution since they provide insight in large-scale duplications events as well as patterns of individual gene losses. Vertebrates tend to have multiple copies of gene clusters that typically are only single clusters or are not present at all in genomes of invertebrates. We investigated the genomic architecture and conserved non-coding sequences of vertebrate KCNA gene clusters. KCNA genes encode shaker-related voltage-gated potassium channels and are arranged in two three-gene clusters in tetrapods. Teleost fish are found to possess four clusters. The two tetrapod KNCA clusters are of approximately the same age as the Hox gene clusters that arose through duplications early in vertebrate evolution. For some genes, their conserved retention and arrangement in clusters are thought to be related to regulatory elements in the intergenic regions, which might prevent rearrangements and gene loss. Interestingly, this hypothesis does not appear to apply to the KCNA clusters, as too few conserved putative regulatory elements are retained.&lt;br /&gt;&lt;br /&gt;Results&lt;br /&gt;We obtained KCNA coding sequences from basal ray-finned fishes (sturgeon, gar, bowfin) and confirmed that the duplication of these genes is specific to teleosts and therefore consistent with the fish-specific genome duplication (FSGD). Phylogenetic analyses of the genes suggest a basal position of the only intron containing KCNA gene in vertebrates (KCNA7). Sistergroup relationships of KCNA1/2 and KCNA3/6 support that a large-scale duplication gave rise to the two clusters found in the genome of tetrapods. We analyzed the intergenic regions of KCNA clusters in vertebrates and found that there are only a few conserved sequences shared between tetrapods and teleosts or between paralogous clusters. The orthologous teleost clusters, however, show sequence conservation in these regions.&lt;br /&gt;&lt;br /&gt;Conclusion&lt;br /&gt;The lack of overall conserved sequences in intergenic regions suggests that there are either other processes than regulatory evolution leading to cluster conservation or that the ancestral regulatory relationships among genes in KCNA clusters have been changed together with their regulatory sites.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:29:53Z</dcterms:available>
    <dc:format>application/pdf</dc:format>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen