Subfields of ample fields : rational maps and definability
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Algebra. 2010, 323(6), pp. 1738-1744. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2009.11.037
Zusammenfassung
Pop proved that a smooth curve C over an ample field K with C(K)≠empty set has |K| many rational points. We strengthen this result by showing that there are |K| many rational points that do not lie in a given proper subfield, even after applying a rational map. This has several consequences. For example, we gain insight into the structure of existentially definable (i.e. diophantine) subsets of ample fields.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Ample field, Rational point, Algebraic curve, Definability
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
FEHM, Arno, 2010. Subfields of ample fields : rational maps and definability. In: Journal of Algebra. 2010, 323(6), pp. 1738-1744. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2009.11.037BibTex
@article{Fehm2010Subfi-12745, year={2010}, doi={10.1016/j.jalgebra.2009.11.037}, title={Subfields of ample fields : rational maps and definability}, number={6}, volume={323}, issn={0021-8693}, journal={Journal of Algebra}, pages={1738--1744}, author={Fehm, Arno} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12745"> <dcterms:title>Subfields of ample fields : rational maps and definability</dcterms:title> <dcterms:abstract xml:lang="eng">Pop proved that a smooth curve C over an ample field K with C(K)≠empty set has |K| many rational points. We strengthen this result by showing that there are |K| many rational points that do not lie in a given proper subfield, even after applying a rational map. This has several consequences. For example, we gain insight into the structure of existentially definable (i.e. diophantine) subsets of ample fields.</dcterms:abstract> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Fehm, Arno</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12745"/> <dcterms:bibliographicCitation>Publ. in: Journal of Algebra 323 (2010), 6, pp. 1738-1744</dcterms:bibliographicCitation> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T08:31:52Z</dc:date> <dc:contributor>Fehm, Arno</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T08:31:52Z</dcterms:available> <dcterms:issued>2010</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja