Publikation:

Subfields of ample fields : rational maps and definability

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Algebra. 2010, 323(6), pp. 1738-1744. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2009.11.037

Zusammenfassung

Pop proved that a smooth curve C over an ample field K with C(K)≠empty set has |K| many rational points. We strengthen this result by showing that there are |K| many rational points that do not lie in a given proper subfield, even after applying a rational map. This has several consequences. For example, we gain insight into the structure of existentially definable (i.e. diophantine) subsets of ample fields.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Ample field, Rational point, Algebraic curve, Definability

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FEHM, Arno, 2010. Subfields of ample fields : rational maps and definability. In: Journal of Algebra. 2010, 323(6), pp. 1738-1744. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2009.11.037
BibTex
@article{Fehm2010Subfi-12745,
  year={2010},
  doi={10.1016/j.jalgebra.2009.11.037},
  title={Subfields of ample fields : rational maps and definability},
  number={6},
  volume={323},
  issn={0021-8693},
  journal={Journal of Algebra},
  pages={1738--1744},
  author={Fehm, Arno}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12745">
    <dcterms:title>Subfields of ample fields : rational maps and definability</dcterms:title>
    <dcterms:abstract xml:lang="eng">Pop proved that a smooth curve C over an ample field K with C(K)≠empty set has |K| many rational points. We strengthen this result by showing that there are |K| many rational points that do not lie in a given proper subfield, even after applying a rational map. This has several consequences. For example, we gain insight into the structure of existentially definable (i.e. diophantine) subsets of ample fields.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Fehm, Arno</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12745"/>
    <dcterms:bibliographicCitation>Publ. in: Journal of Algebra 323 (2010), 6, pp. 1738-1744</dcterms:bibliographicCitation>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T08:31:52Z</dc:date>
    <dc:contributor>Fehm, Arno</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T08:31:52Z</dcterms:available>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen