Publikation:

CourtTime : Generating Actionable Insights into Tennis Matches Using Visual Analytics

Lade...
Vorschaubild

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Tennis players and coaches of all proficiency levels seek to understand and improve their play. Summary statistics alone are inadequate to provide the insights players need to improve their games. Spatio-temporal data capturing player and ball movements is likely to provide the actionable insights needed to identify player strengths, weaknesses, and strategies. To fully utilize this spatio-temporal data, we need to integrate it with domain-relevant context meta-data. In this paper, we propose CourtTime, a novel approach to perform data-driven visual analysis of individual tennis matches. Our visual approach introduces a novel visual metaphor, namely 1-D Space-Time Charts that enable the analysis of single points at a glance based on small multiples. We also employ user-driven sorting and clustering techniques and a layout technique that aligns the last few shots in a point to facilitate shot pattern discovery. We discuss the usefulness of CourtTime via an extensive case study and report on feedback from an amateur tennis player and three tennis coaches.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visual analytics, tennis analysis, sports analytics, spatio-temporal analysis

Konferenz

IEEE Visual Analytics Science and Technology (VAST), IEEE Information Visualization (InfoVis), and IEEE Scientific Visualization (SciVis) 2019, 20. Okt. 2019 - 25. Okt. 2019, Vancouver, BC, Canada
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690POLK, Tom, Dominik JÄCKLE, Johannes HÄUSSLER, Jing YANG, 2019. CourtTime : Generating Actionable Insights into Tennis Matches Using Visual Analytics. IEEE Visual Analytics Science and Technology (VAST), IEEE Information Visualization (InfoVis), and IEEE Scientific Visualization (SciVis) 2019. Vancouver, BC, Canada, 20. Okt. 2019 - 25. Okt. 2019
BibTex
@inproceedings{Polk2019Court-46446,
  year={2019},
  title={CourtTime : Generating Actionable Insights into Tennis Matches Using Visual Analytics},
  author={Polk, Tom and Jäckle, Dominik and Häußler, Johannes and Yang, Jing}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46446">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46446/1/CourtTime__Generating_Actionable_Insights_into_Amateur_Tennis_Matches_Using_Visual_Analytics%20%28with%20acknowledgements%29.pdf"/>
    <dc:language>eng</dc:language>
    <dc:creator>Jäckle, Dominik</dc:creator>
    <dc:contributor>Jäckle, Dominik</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Yang, Jing</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Polk, Tom</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>CourtTime : Generating Actionable Insights into Tennis Matches Using Visual Analytics</dcterms:title>
    <dcterms:abstract xml:lang="eng">Tennis players and coaches of all proficiency levels seek to understand and improve their play. Summary statistics alone are inadequate to provide the insights players need to improve their games. Spatio-temporal data capturing player and ball movements is likely to provide the actionable insights needed to identify player strengths, weaknesses, and strategies. To fully utilize this spatio-temporal data, we need to integrate it with domain-relevant context meta-data. In this paper, we propose CourtTime, a novel approach to perform data-driven visual analysis of individual tennis matches. Our visual approach introduces a novel visual metaphor, namely 1-D Space-Time Charts that enable the analysis of single points at a glance based on small multiples. We also employ user-driven sorting and clustering techniques and a layout technique that aligns the last few shots in a point to facilitate shot pattern discovery. We discuss the usefulness of CourtTime via an extensive case study and report on feedback from an amateur tennis player and three tennis coaches.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46446/1/CourtTime__Generating_Actionable_Insights_into_Amateur_Tennis_Matches_Using_Visual_Analytics%20%28with%20acknowledgements%29.pdf"/>
    <dc:creator>Häußler, Johannes</dc:creator>
    <dc:contributor>Häußler, Johannes</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46446"/>
    <dc:creator>Polk, Tom</dc:creator>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-18T10:15:11Z</dcterms:available>
    <dc:creator>Yang, Jing</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-18T10:15:11Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen