CourtTime : Generating Actionable Insights into Tennis Matches Using Visual Analytics
CourtTime : Generating Actionable Insights into Tennis Matches Using Visual Analytics
Loading...
Date
2019
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Abstract
Tennis players and coaches of all proficiency levels seek to understand and improve their play. Summary statistics alone are inadequate to provide the insights players need to improve their games. Spatio-temporal data capturing player and ball movements is likely to provide the actionable insights needed to identify player strengths, weaknesses, and strategies. To fully utilize this spatio-temporal data, we need to integrate it with domain-relevant context meta-data. In this paper, we propose CourtTime, a novel approach to perform data-driven visual analysis of individual tennis matches. Our visual approach introduces a novel visual metaphor, namely 1-D Space-Time Charts that enable the analysis of single points at a glance based on small multiples. We also employ user-driven sorting and clustering techniques and a layout technique that aligns the last few shots in a point to facilitate shot pattern discovery. We discuss the usefulness of CourtTime via an extensive case study and report on feedback from an amateur tennis player and three tennis coaches.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Visual analytics, tennis analysis, sports analytics, spatio-temporal analysis
Conference
IEEE Visual Analytics Science and Technology (VAST), IEEE Information Visualization (InfoVis), and IEEE Scientific Visualization (SciVis) 2019, Oct 20, 2019 - Oct 25, 2019, Vancouver, BC, Canada
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
POLK, Tom, Dominik JÄCKLE, Johannes HÄUSSLER, Jing YANG, 2019. CourtTime : Generating Actionable Insights into Tennis Matches Using Visual Analytics. IEEE Visual Analytics Science and Technology (VAST), IEEE Information Visualization (InfoVis), and IEEE Scientific Visualization (SciVis) 2019. Vancouver, BC, Canada, Oct 20, 2019 - Oct 25, 2019BibTex
@inproceedings{Polk2019Court-46446, year={2019}, title={CourtTime : Generating Actionable Insights into Tennis Matches Using Visual Analytics}, author={Polk, Tom and Jäckle, Dominik and Häußler, Johannes and Yang, Jing} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46446"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46446/1/CourtTime__Generating_Actionable_Insights_into_Amateur_Tennis_Matches_Using_Visual_Analytics%20%28with%20acknowledgements%29.pdf"/> <dc:language>eng</dc:language> <dc:creator>Jäckle, Dominik</dc:creator> <dc:contributor>Jäckle, Dominik</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Yang, Jing</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Polk, Tom</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:title>CourtTime : Generating Actionable Insights into Tennis Matches Using Visual Analytics</dcterms:title> <dcterms:abstract xml:lang="eng">Tennis players and coaches of all proficiency levels seek to understand and improve their play. Summary statistics alone are inadequate to provide the insights players need to improve their games. Spatio-temporal data capturing player and ball movements is likely to provide the actionable insights needed to identify player strengths, weaknesses, and strategies. To fully utilize this spatio-temporal data, we need to integrate it with domain-relevant context meta-data. In this paper, we propose CourtTime, a novel approach to perform data-driven visual analysis of individual tennis matches. Our visual approach introduces a novel visual metaphor, namely 1-D Space-Time Charts that enable the analysis of single points at a glance based on small multiples. We also employ user-driven sorting and clustering techniques and a layout technique that aligns the last few shots in a point to facilitate shot pattern discovery. We discuss the usefulness of CourtTime via an extensive case study and report on feedback from an amateur tennis player and three tennis coaches.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46446/1/CourtTime__Generating_Actionable_Insights_into_Amateur_Tennis_Matches_Using_Visual_Analytics%20%28with%20acknowledgements%29.pdf"/> <dc:creator>Häußler, Johannes</dc:creator> <dc:contributor>Häußler, Johannes</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46446"/> <dc:creator>Polk, Tom</dc:creator> <dcterms:issued>2019</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-18T10:15:11Z</dcterms:available> <dc:creator>Yang, Jing</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-18T10:15:11Z</dc:date> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes