A Locally Modified Parametric Finite Element Method for Interface Problems
A Locally Modified Parametric Finite Element Method for Interface Problems
No Thumbnail Available
Files
There are no files associated with this item.
Date
2014
Authors
Richter, Thomas
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
SIAM Journal on Numerical Analysis ; 52 (2014), 5. - pp. 2315-2334. - Society for Industrial and Applied Mathematics (SIAM). - ISSN 0036-1429. - eISSN 1095-7170
Abstract
We present a modified finite element method that is able to approximate interface problems with high accuracy. We consider interface problems where the solution is continuous; its derivatives, however, may be discontinuous across interface curves within the domain. The proposed discretization is based on a local modification of the finite element basis functions using a fixed quadrilateral mesh. Instead of moving mesh nodes, we resolve the interface locally by an adapted parametric approach. All modifications are applied locally and in an implicit fashion. The scheme is easy to implement and is well suited for time-dependent moving interface problems. We show optimal order of convergence for elliptic problems, and further, we give a bound on the condition number of the system matrix. Both estimates do not depend on the interface location relative to the mesh.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
finite elements, interface problem, a priori analysis
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
FREI, Stefan, Thomas RICHTER, 2014. A Locally Modified Parametric Finite Element Method for Interface Problems. In: SIAM Journal on Numerical Analysis. Society for Industrial and Applied Mathematics (SIAM). 52(5), pp. 2315-2334. ISSN 0036-1429. eISSN 1095-7170. Available under: doi: 10.1137/130919489BibTex
@article{Frei2014Local-55819, year={2014}, doi={10.1137/130919489}, title={A Locally Modified Parametric Finite Element Method for Interface Problems}, number={5}, volume={52}, issn={0036-1429}, journal={SIAM Journal on Numerical Analysis}, pages={2315--2334}, author={Frei, Stefan and Richter, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55819"> <dc:contributor>Frei, Stefan</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Richter, Thomas</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55819"/> <dc:language>eng</dc:language> <dc:creator>Richter, Thomas</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We present a modified finite element method that is able to approximate interface problems with high accuracy. We consider interface problems where the solution is continuous; its derivatives, however, may be discontinuous across interface curves within the domain. The proposed discretization is based on a local modification of the finite element basis functions using a fixed quadrilateral mesh. Instead of moving mesh nodes, we resolve the interface locally by an adapted parametric approach. All modifications are applied locally and in an implicit fashion. The scheme is easy to implement and is well suited for time-dependent moving interface problems. We show optimal order of convergence for elliptic problems, and further, we give a bound on the condition number of the system matrix. Both estimates do not depend on the interface location relative to the mesh.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-09T10:35:14Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2014</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-09T10:35:14Z</dc:date> <dc:creator>Frei, Stefan</dc:creator> <dcterms:title>A Locally Modified Parametric Finite Element Method for Interface Problems</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Yes