Sobolev regularity for convex functionals on BD
Sobolev regularity for convex functionals on BD
No Thumbnail Available
Files
There are no files associated with this item.
Date
2019
Authors
Kristensen, Jan
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Calculus of Variations and Partial Differential Equations ; 58 (2019), 2. - 56. - Springer. - ISSN 0944-2669. - eISSN 1432-0835
Abstract
We establish the first Sobolev regularity and uniqueness results for minimisers of autonomous, convex variational integrals of linear growth which depend on the symmetric rather than the full gradient. This extends the results available in the literature for the BV-setting to the case of functionals whose full gradients are a priori not known to exist as finite matrix-valued Radon measures.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
GMEINEDER, Franz, Jan KRISTENSEN, 2019. Sobolev regularity for convex functionals on BD. In: Calculus of Variations and Partial Differential Equations. Springer. 58(2), 56. ISSN 0944-2669. eISSN 1432-0835. Available under: doi: 10.1007/s00526-019-1491-6BibTex
@article{Gmeineder2019Sobol-53930, year={2019}, doi={10.1007/s00526-019-1491-6}, title={Sobolev regularity for convex functionals on BD}, number={2}, volume={58}, issn={0944-2669}, journal={Calculus of Variations and Partial Differential Equations}, author={Gmeineder, Franz and Kristensen, Jan}, note={Article Number: 56} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53930"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Sobolev regularity for convex functionals on BD</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53930"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Gmeineder, Franz</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T11:39:23Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T11:39:23Z</dcterms:available> <dcterms:issued>2019</dcterms:issued> <dc:contributor>Kristensen, Jan</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">We establish the first Sobolev regularity and uniqueness results for minimisers of autonomous, convex variational integrals of linear growth which depend on the symmetric rather than the full gradient. This extends the results available in the literature for the BV-setting to the case of functionals whose full gradients are a priori not known to exist as finite matrix-valued Radon measures.</dcterms:abstract> <dc:creator>Gmeineder, Franz</dc:creator> <dc:creator>Kristensen, Jan</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Yes