Publikation:

Evaluating Node Selection Techniques for Network Visualizations in Virtual Reality

Lade...
Vorschaubild

Dateien

Joos_2-ogj24u3mz71w8.pdf
Joos_2-ogj24u3mz71w8.pdfGröße: 4.71 MBDownloads: 31

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): EXC 2117 – 422037984
Deutsche Forschungsgemeinschaft (DFG): 251654672 – TRR 161

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

DAIBER, Florian, Hrsg., André ZENNER, Hrsg., Tony HUANG, Hrsg. und andere. SUI '24 : Proceedings of the 2024 ACM Symposium on Spatial User Interaction. New York, NY: ACM, 2024, 25. ISBN 979-8-4007-1088-9. Verfügbar unter: doi: 10.1145/3677386.3682102

Zusammenfassung

The visual analysis of networks is crucial for domain experts to understand their structure, investigate attributes, and formulate new hypotheses. Effective visual exploration relies heavily on interaction, particularly the selection of individual nodes. While node selection in 2D environments is relatively straightforward, immersive 3D environments like Virtual Reality (VR) introduce additional challenges such as clutter, occlusion, and depth perception, complicating node selection. State-of-the-art VR network analysis systems predominantly utilize a ray-based selection method controlled via VR controllers. Although effective for small and sparse graphs, this method struggles with larger and denser network visualizations. To address this limitation and enhance node selection in cluttered immersive environments, we present and compare six distinct node selection techniques through a user study involving 18 participants. Our findings reveal significant differences in the efficiency, physical effort, and user preference of these techniques, particularly in relation to graph complexity. Notably, the filter plane metaphor emerged as the superior method for selecting nodes in dense graphs. These insights advance the field of effective network exploration in immersive environments, and our validations provide a foundation for future research on general object manipulation in virtual 3D spaces. Our work informs the design of more efficient and user-friendly VR tools, ultimately enhancing the usability and effectiveness of immersive network analysis systems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Virtual reality, network analysis, selection, interaction, evaluation

Konferenz

SUI '24: ACM Symposium on Spatial User Interaction, 7. Okt. 2024 - 8. Okt. 2023, Trier, Germany
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JOOS, Lucas, Uzay DURDU, Jonathan WIELAND, Harald REITERER, Daniel A. KEIM, Johannes FUCHS, Maximilian T. FISCHER, 2024. Evaluating Node Selection Techniques for Network Visualizations in Virtual Reality. SUI '24: ACM Symposium on Spatial User Interaction. Trier, Germany, 7. Okt. 2024 - 8. Okt. 2023. In: DAIBER, Florian, Hrsg., André ZENNER, Hrsg., Tony HUANG, Hrsg. und andere. SUI '24 : Proceedings of the 2024 ACM Symposium on Spatial User Interaction. New York, NY: ACM, 2024, 25. ISBN 979-8-4007-1088-9. Verfügbar unter: doi: 10.1145/3677386.3682102
BibTex
@inproceedings{Joos2024-10-07Evalu-71123,
  year={2024},
  doi={10.1145/3677386.3682102},
  title={Evaluating Node Selection Techniques for Network Visualizations in Virtual Reality},
  isbn={979-8-4007-1088-9},
  publisher={ACM},
  address={New York, NY},
  booktitle={SUI '24 : Proceedings of the 2024 ACM Symposium on Spatial User Interaction},
  editor={Daiber, Florian and Zenner, André and Huang, Tony},
  author={Joos, Lucas and Durdu, Uzay and Wieland, Jonathan and Reiterer, Harald and Keim, Daniel A. and Fuchs, Johannes and Fischer, Maximilian T.},
  note={Article Number: 25}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71123">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71123/1/Joos_2-ogj24u3mz71w8.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-06T16:28:39Z</dcterms:available>
    <dc:creator>Reiterer, Harald</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71123/1/Joos_2-ogj24u3mz71w8.pdf"/>
    <dc:creator>Joos, Lucas</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71123"/>
    <dc:contributor>Fischer, Maximilian T.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Fuchs, Johannes</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Wieland, Jonathan</dc:creator>
    <dc:creator>Fischer, Maximilian T.</dc:creator>
    <dc:contributor>Joos, Lucas</dc:contributor>
    <dc:creator>Durdu, Uzay</dc:creator>
    <dc:creator>Fuchs, Johannes</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-06T16:28:39Z</dc:date>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:issued>2024-10-07</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:contributor>Durdu, Uzay</dc:contributor>
    <dcterms:title>Evaluating Node Selection Techniques for Network Visualizations in Virtual Reality</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract>The visual analysis of networks is crucial for domain experts to understand their structure, investigate attributes, and formulate new hypotheses. Effective visual exploration relies heavily on interaction, particularly the selection of individual nodes. While node selection in 2D environments is relatively straightforward, immersive 3D environments like Virtual Reality (VR) introduce additional challenges such as clutter, occlusion, and depth perception, complicating node selection. State-of-the-art VR network analysis systems predominantly utilize a ray-based selection method controlled via VR controllers. Although effective for small and sparse graphs, this method struggles with larger and denser network visualizations. To address this limitation and enhance node selection in cluttered immersive environments, we present and compare six distinct node selection techniques through a user study involving 18 participants. Our findings reveal significant differences in the efficiency, physical effort, and user preference of these techniques, particularly in relation to graph complexity. Notably, the filter plane metaphor emerged as the superior method for selecting nodes in dense graphs. These insights advance the field of effective network exploration in immersive environments, and our validations provide a foundation for future research on general object manipulation in virtual 3D spaces. Our work informs the design of more efficient and user-friendly VR tools, ultimately enhancing the usability and effectiveness of immersive network analysis systems.</dcterms:abstract>
    <dc:contributor>Wieland, Jonathan</dc:contributor>
    <dc:contributor>Reiterer, Harald</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen