Evaluating Node Selection Techniques for Network Visualizations in Virtual Reality
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 251654672 – TRR 161
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The visual analysis of networks is crucial for domain experts to understand their structure, investigate attributes, and formulate new hypotheses. Effective visual exploration relies heavily on interaction, particularly the selection of individual nodes. While node selection in 2D environments is relatively straightforward, immersive 3D environments like Virtual Reality (VR) introduce additional challenges such as clutter, occlusion, and depth perception, complicating node selection. State-of-the-art VR network analysis systems predominantly utilize a ray-based selection method controlled via VR controllers. Although effective for small and sparse graphs, this method struggles with larger and denser network visualizations. To address this limitation and enhance node selection in cluttered immersive environments, we present and compare six distinct node selection techniques through a user study involving 18 participants. Our findings reveal significant differences in the efficiency, physical effort, and user preference of these techniques, particularly in relation to graph complexity. Notably, the filter plane metaphor emerged as the superior method for selecting nodes in dense graphs. These insights advance the field of effective network exploration in immersive environments, and our validations provide a foundation for future research on general object manipulation in virtual 3D spaces. Our work informs the design of more efficient and user-friendly VR tools, ultimately enhancing the usability and effectiveness of immersive network analysis systems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JOOS, Lucas, Uzay DURDU, Jonathan WIELAND, Harald REITERER, Daniel A. KEIM, Johannes FUCHS, Maximilian T. FISCHER, 2024. Evaluating Node Selection Techniques for Network Visualizations in Virtual Reality. SUI '24: ACM Symposium on Spatial User Interaction. Trier, Germany, 7. Okt. 2024 - 8. Okt. 2023. In: DAIBER, Florian, Hrsg., André ZENNER, Hrsg., Tony HUANG, Hrsg. und andere. SUI '24 : Proceedings of the 2024 ACM Symposium on Spatial User Interaction. New York, NY: ACM, 2024, 25. ISBN 979-8-4007-1088-9. Verfügbar unter: doi: 10.1145/3677386.3682102BibTex
@inproceedings{Joos2024-10-07Evalu-71123, year={2024}, doi={10.1145/3677386.3682102}, title={Evaluating Node Selection Techniques for Network Visualizations in Virtual Reality}, isbn={979-8-4007-1088-9}, publisher={ACM}, address={New York, NY}, booktitle={SUI '24 : Proceedings of the 2024 ACM Symposium on Spatial User Interaction}, editor={Daiber, Florian and Zenner, André and Huang, Tony}, author={Joos, Lucas and Durdu, Uzay and Wieland, Jonathan and Reiterer, Harald and Keim, Daniel A. and Fuchs, Johannes and Fischer, Maximilian T.}, note={Article Number: 25} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71123"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71123/1/Joos_2-ogj24u3mz71w8.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-06T16:28:39Z</dcterms:available> <dc:creator>Reiterer, Harald</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71123/1/Joos_2-ogj24u3mz71w8.pdf"/> <dc:creator>Joos, Lucas</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71123"/> <dc:contributor>Fischer, Maximilian T.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Fuchs, Johannes</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Wieland, Jonathan</dc:creator> <dc:creator>Fischer, Maximilian T.</dc:creator> <dc:contributor>Joos, Lucas</dc:contributor> <dc:creator>Durdu, Uzay</dc:creator> <dc:creator>Fuchs, Johannes</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-06T16:28:39Z</dc:date> <dc:contributor>Keim, Daniel A.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:issued>2024-10-07</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Durdu, Uzay</dc:contributor> <dcterms:title>Evaluating Node Selection Techniques for Network Visualizations in Virtual Reality</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract>The visual analysis of networks is crucial for domain experts to understand their structure, investigate attributes, and formulate new hypotheses. Effective visual exploration relies heavily on interaction, particularly the selection of individual nodes. While node selection in 2D environments is relatively straightforward, immersive 3D environments like Virtual Reality (VR) introduce additional challenges such as clutter, occlusion, and depth perception, complicating node selection. State-of-the-art VR network analysis systems predominantly utilize a ray-based selection method controlled via VR controllers. Although effective for small and sparse graphs, this method struggles with larger and denser network visualizations. To address this limitation and enhance node selection in cluttered immersive environments, we present and compare six distinct node selection techniques through a user study involving 18 participants. Our findings reveal significant differences in the efficiency, physical effort, and user preference of these techniques, particularly in relation to graph complexity. Notably, the filter plane metaphor emerged as the superior method for selecting nodes in dense graphs. These insights advance the field of effective network exploration in immersive environments, and our validations provide a foundation for future research on general object manipulation in virtual 3D spaces. Our work informs the design of more efficient and user-friendly VR tools, ultimately enhancing the usability and effectiveness of immersive network analysis systems.</dcterms:abstract> <dc:contributor>Wieland, Jonathan</dc:contributor> <dc:contributor>Reiterer, Harald</dc:contributor> </rdf:Description> </rdf:RDF>