Heterogeneous Diffusion in Thin Polymer Films as observed by High-Temperature Single-Molecule Fluorescence Microscopy

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Single-molecule fluorescence microscopy was used to investigate the dynamics of perylene diimide (PDI) molecules in thin supported polystyrene (PS) films at temperatures up to 135 °C. Such high temperatures, so far unreached in single-molecule spectroscopy studies, were achieved using a custom-built setup which allows for restricting the heated mass to a minimum. This enables temperature-dependent single-molecule fluorescence studies of structural dynamics in the temperature range most relevant to the processing and to applications of thermoplastic materials. In order to ensure that polymer chains were relaxed, a molecular weight of 3000 g/mol, clearly below the entanglement length of PS, was chosen. We found significant heterogeneities in the motion of single PDI probe molecules near Tg. An analysis of the track radius of the recorded single-probe molecule tracks allowed for a distinction between mobile and immobile molecules. Up to the glass transition temperature in bulk, Tg,bulk, probe molecules were immobile; at temperatures higher than Tg,bulk + 40 K, all probe molecules were mobile. In the range between 0 and 40 K above Tg,bulk the fraction of mobile probe molecules strongly depends on film thickness. In 30-nm thin films mobility is observed at lower temperatures than in thick films. The fractions of mobile probe molecules were compared and rationalized using Monte Carlo random walk simulations. Results of these simulations indicate that the observed heterogeneities can be explained by a model which assumes a Tg profile and an increased probability of probe molecules remaining at the surface, both effects caused by a density profile with decreasing polymer density at the polymer–air interface.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
540 Chemie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690FLIER, Bente, Moritz C. BAIER, Johannes HUBER, Klaus MÜLLEN, Stefan MECKING, Andreas ZUMBUSCH, Dominik WÖLL, 2012. Heterogeneous Diffusion in Thin Polymer Films as observed by High-Temperature Single-Molecule Fluorescence Microscopy. In: Journal of the American Chemical Society. 2012, 134(1), pp. 480-488. ISSN 0002-7863. eISSN 1520-5126. Available under: doi: 10.1021/ja208581r
BibTex
@article{Flier2012-01-11Heter-17492,
  year={2012},
  doi={10.1021/ja208581r},
  title={Heterogeneous Diffusion in Thin Polymer Films as observed by High-Temperature Single-Molecule Fluorescence Microscopy},
  number={1},
  volume={134},
  issn={0002-7863},
  journal={Journal of the American Chemical Society},
  pages={480--488},
  author={Flier, Bente and Baier, Moritz C. and Huber, Johannes and Müllen, Klaus and Mecking, Stefan and Zumbusch, Andreas and Wöll, Dominik}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17492">
    <dc:contributor>Flier, Bente</dc:contributor>
    <dc:creator>Mecking, Stefan</dc:creator>
    <dc:creator>Zumbusch, Andreas</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-18T09:19:55Z</dcterms:available>
    <dc:creator>Müllen, Klaus</dc:creator>
    <dc:creator>Flier, Bente</dc:creator>
    <dc:contributor>Wöll, Dominik</dc:contributor>
    <dc:creator>Huber, Johannes</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-18T09:19:55Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:contributor>Mecking, Stefan</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Müllen, Klaus</dc:contributor>
    <dcterms:issued>2012-01-11</dcterms:issued>
    <dcterms:bibliographicCitation>Publ. in: The Journal of the American Chemical Society ; 134 (2012), 1. - S. 480-488</dcterms:bibliographicCitation>
    <dc:contributor>Baier, Moritz C.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17492"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Huber, Johannes</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:title>Heterogeneous Diffusion in Thin Polymer Films as observed by High-Temperature Single-Molecule Fluorescence Microscopy</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Zumbusch, Andreas</dc:contributor>
    <dc:creator>Baier, Moritz C.</dc:creator>
    <dc:creator>Wöll, Dominik</dc:creator>
    <dcterms:abstract xml:lang="eng">Single-molecule fluorescence microscopy was used to investigate the dynamics of perylene diimide (PDI) molecules in thin supported polystyrene (PS) films at temperatures up to 135 °C. Such high temperatures, so far unreached in single-molecule spectroscopy studies, were achieved using a custom-built setup which allows for restricting the heated mass to a minimum. This enables temperature-dependent single-molecule fluorescence studies of structural dynamics in the temperature range most relevant to the processing and to applications of thermoplastic materials. In order to ensure that polymer chains were relaxed, a molecular weight of 3000 g/mol, clearly below the entanglement length of PS, was chosen. We found significant heterogeneities in the motion of single PDI probe molecules near Tg. An analysis of the track radius of the recorded single-probe molecule tracks allowed for a distinction between mobile and immobile molecules. Up to the glass transition temperature in bulk, Tg,bulk, probe molecules were immobile; at temperatures higher than Tg,bulk + 40 K, all probe molecules were mobile. In the range between 0 and 40 K above Tg,bulk the fraction of mobile probe molecules strongly depends on film thickness. In 30-nm thin films mobility is observed at lower temperatures than in thick films. The fractions of mobile probe molecules were compared and rationalized using Monte Carlo random walk simulations. Results of these simulations indicate that the observed heterogeneities can be explained by a model which assumes a Tg profile and an increased probability of probe molecules remaining at the surface, both effects caused by a density profile with decreasing polymer density at the polymer–air interface.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen