Publikation:

Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems

Lade...
Vorschaubild

Dateien

Ivanova-Rohling_2-oo7idbf9x19u8.pdf
Ivanova-Rohling_2-oo7idbf9x19u8.pdfGröße: 721.12 KBDownloads: 262

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Cybernetics and Information Technologies. De Gruyter. 2020, 20(6), pp. 61-73. ISSN 1311-9702. eISSN 1314-4081. Available under: doi: 10.2478/cait-2020-0061

Zusammenfassung

Finding optimal measurement schemes in quantum state tomography is a fundamental problem in quantum computation. It is known that for non-degenerate operators the optimal measurement scheme is based on mutually unbiassed bases. This paper is a follow up from our previous work, where we use standard numberical approaches to look for optimal measurement schemes, where the measurement operators are projections on individual pure quantum states. In this paper we demonstrate the usefulness of several machine learning techniques - reinforcement learning and parallel machine learning approaches, to discover measurement schemes, which are significantly better than the ones discovered by standard numerical methods in our previous work. The high-performing quorums of projection operators we have discovered have complex structure and symmetries, which may imply that the optimal solution will posess such symmetries.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Quantum information, optimization problem, Widening, reinforcement learning

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690IVANOVA-ROHLING, Violeta, Niklas ROHLING, 2020. Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems. In: Cybernetics and Information Technologies. De Gruyter. 2020, 20(6), pp. 61-73. ISSN 1311-9702. eISSN 1314-4081. Available under: doi: 10.2478/cait-2020-0061
BibTex
@article{IvanovaRohling2020Evalu-52415,
  year={2020},
  doi={10.2478/cait-2020-0061},
  title={Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems},
  number={6},
  volume={20},
  issn={1311-9702},
  journal={Cybernetics and Information Technologies},
  pages={61--73},
  author={Ivanova-Rohling, Violeta and Rohling, Niklas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52415">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52415/1/Ivanova-Rohling_2-oo7idbf9x19u8.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:abstract xml:lang="eng">Finding optimal measurement schemes in quantum state tomography is a fundamental problem in quantum computation. It is known that for non-degenerate operators the optimal measurement scheme is based on mutually unbiassed bases. This paper is a follow up from our previous work, where we use standard numberical approaches to look for optimal measurement schemes, where the measurement operators are projections on individual pure quantum states. In this paper we demonstrate the usefulness of several machine learning techniques - reinforcement learning and parallel machine learning approaches, to discover measurement schemes, which are significantly better than the ones discovered by standard numerical methods in our previous work. The high-performing quorums of projection operators we have discovered have complex structure and symmetries, which may imply that the optimal solution will posess such symmetries.</dcterms:abstract>
    <dc:creator>Rohling, Niklas</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-14T11:20:51Z</dcterms:available>
    <dc:creator>Ivanova-Rohling, Violeta</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-14T11:20:51Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52415"/>
    <dc:contributor>Ivanova-Rohling, Violeta</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52415/1/Ivanova-Rohling_2-oo7idbf9x19u8.pdf"/>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dcterms:title>Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Rohling, Niklas</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen