Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Finding optimal measurement schemes in quantum state tomography is a fundamental problem in quantum computation. It is known that for non-degenerate operators the optimal measurement scheme is based on mutually unbiassed bases. This paper is a follow up from our previous work, where we use standard numberical approaches to look for optimal measurement schemes, where the measurement operators are projections on individual pure quantum states. In this paper we demonstrate the usefulness of several machine learning techniques - reinforcement learning and parallel machine learning approaches, to discover measurement schemes, which are significantly better than the ones discovered by standard numerical methods in our previous work. The high-performing quorums of projection operators we have discovered have complex structure and symmetries, which may imply that the optimal solution will posess such symmetries.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
IVANOVA-ROHLING, Violeta, Niklas ROHLING, 2020. Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems. In: Cybernetics and Information Technologies. De Gruyter. 2020, 20(6), pp. 61-73. ISSN 1311-9702. eISSN 1314-4081. Available under: doi: 10.2478/cait-2020-0061BibTex
@article{IvanovaRohling2020Evalu-52415, year={2020}, doi={10.2478/cait-2020-0061}, title={Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems}, number={6}, volume={20}, issn={1311-9702}, journal={Cybernetics and Information Technologies}, pages={61--73}, author={Ivanova-Rohling, Violeta and Rohling, Niklas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52415"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52415/1/Ivanova-Rohling_2-oo7idbf9x19u8.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:abstract xml:lang="eng">Finding optimal measurement schemes in quantum state tomography is a fundamental problem in quantum computation. It is known that for non-degenerate operators the optimal measurement scheme is based on mutually unbiassed bases. This paper is a follow up from our previous work, where we use standard numberical approaches to look for optimal measurement schemes, where the measurement operators are projections on individual pure quantum states. In this paper we demonstrate the usefulness of several machine learning techniques - reinforcement learning and parallel machine learning approaches, to discover measurement schemes, which are significantly better than the ones discovered by standard numerical methods in our previous work. The high-performing quorums of projection operators we have discovered have complex structure and symmetries, which may imply that the optimal solution will posess such symmetries.</dcterms:abstract> <dc:creator>Rohling, Niklas</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-14T11:20:51Z</dcterms:available> <dc:creator>Ivanova-Rohling, Violeta</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-14T11:20:51Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52415"/> <dc:contributor>Ivanova-Rohling, Violeta</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52415/1/Ivanova-Rohling_2-oo7idbf9x19u8.pdf"/> <dcterms:issued>2020</dcterms:issued> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dcterms:title>Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Rohling, Niklas</dc:contributor> </rdf:Description> </rdf:RDF>