Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems

Lade...
Vorschaubild
Dateien
Ivanova-Rohling_2-oo7idbf9x19u8.pdf
Ivanova-Rohling_2-oo7idbf9x19u8.pdfGröße: 721.12 KBDownloads: 237
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Cybernetics and Information Technologies. De Gruyter. 2020, 20(6), pp. 61-73. ISSN 1311-9702. eISSN 1314-4081. Available under: doi: 10.2478/cait-2020-0061
Zusammenfassung

Finding optimal measurement schemes in quantum state tomography is a fundamental problem in quantum computation. It is known that for non-degenerate operators the optimal measurement scheme is based on mutually unbiassed bases. This paper is a follow up from our previous work, where we use standard numberical approaches to look for optimal measurement schemes, where the measurement operators are projections on individual pure quantum states. In this paper we demonstrate the usefulness of several machine learning techniques - reinforcement learning and parallel machine learning approaches, to discover measurement schemes, which are significantly better than the ones discovered by standard numerical methods in our previous work. The high-performing quorums of projection operators we have discovered have complex structure and symmetries, which may imply that the optimal solution will posess such symmetries.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Quantum information, optimization problem, Widening, reinforcement learning
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690IVANOVA-ROHLING, Violeta, Niklas ROHLING, 2020. Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems. In: Cybernetics and Information Technologies. De Gruyter. 2020, 20(6), pp. 61-73. ISSN 1311-9702. eISSN 1314-4081. Available under: doi: 10.2478/cait-2020-0061
BibTex
@article{IvanovaRohling2020Evalu-52415,
  year={2020},
  doi={10.2478/cait-2020-0061},
  title={Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems},
  number={6},
  volume={20},
  issn={1311-9702},
  journal={Cybernetics and Information Technologies},
  pages={61--73},
  author={Ivanova-Rohling, Violeta and Rohling, Niklas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52415">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52415/1/Ivanova-Rohling_2-oo7idbf9x19u8.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:abstract xml:lang="eng">Finding optimal measurement schemes in quantum state tomography is a fundamental problem in quantum computation. It is known that for non-degenerate operators the optimal measurement scheme is based on mutually unbiassed bases. This paper is a follow up from our previous work, where we use standard numberical approaches to look for optimal measurement schemes, where the measurement operators are projections on individual pure quantum states. In this paper we demonstrate the usefulness of several machine learning techniques - reinforcement learning and parallel machine learning approaches, to discover measurement schemes, which are significantly better than the ones discovered by standard numerical methods in our previous work. The high-performing quorums of projection operators we have discovered have complex structure and symmetries, which may imply that the optimal solution will posess such symmetries.</dcterms:abstract>
    <dc:creator>Rohling, Niklas</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-14T11:20:51Z</dcterms:available>
    <dc:creator>Ivanova-Rohling, Violeta</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-14T11:20:51Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52415"/>
    <dc:contributor>Ivanova-Rohling, Violeta</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52415/1/Ivanova-Rohling_2-oo7idbf9x19u8.pdf"/>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dcterms:title>Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Rohling, Niklas</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt