Hybrid fragment mining with MoFA and FSG
Hybrid fragment mining with MoFA and FSG
Loading...
Date
2004
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published in
2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583). - IEEE, 2004. - pp. 4559-4564. - ISBN 0-7803-8567-5
Abstract
In the last few years a number of different subgraph mining algorithms have been proposed. They are often used for finding frequent fragments in molecular databases. All these algorithms behave quite well when used on small datasets of not more than a few thousand molecules. However, they all fail on larger amounts of data because they are either time consuming or have enormous memory requirements. In this paper we present a hybrid mining technique that overcomes the individual problems of the underlying algorithms and outperforms the individual methods impressively on large databases.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Molecules,fragments,graph mining,hybrid algorithm
Conference
2004 IEEE International Conference on Systems, Man and Cybernetics, The Hague, Netherlands
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
MEINL, Thorsten, Michael R. BERTHOLD, 2004. Hybrid fragment mining with MoFA and FSG. 2004 IEEE International Conference on Systems, Man and Cybernetics. The Hague, Netherlands. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583). IEEE, pp. 4559-4564. ISBN 0-7803-8567-5. Available under: doi: 10.1109/ICSMC.2004.1401250BibTex
@inproceedings{Meinl2004Hybri-5541, year={2004}, doi={10.1109/ICSMC.2004.1401250}, title={Hybrid fragment mining with MoFA and FSG}, isbn={0-7803-8567-5}, publisher={IEEE}, booktitle={2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583)}, pages={4559--4564}, author={Meinl, Thorsten and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5541"> <dc:format>application/pdf</dc:format> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5541/1/Hybrid_fragment_mining_with_MoFA_and_FSG.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2004</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Meinl, Thorsten</dc:contributor> <dcterms:bibliographicCitation>First publ. in: 2004 IEEE International Conference on Systems, Man & Cybernetics, The Hague, Netherlands, 10 - 13 October 2004. Piscataway, NJ : IEEE Operations Center, 2004, pp. 4559-4564</dcterms:bibliographicCitation> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Meinl, Thorsten</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5541/1/Hybrid_fragment_mining_with_MoFA_and_FSG.pdf"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:18Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:title>Hybrid fragment mining with MoFA and FSG</dcterms:title> <dc:creator>Berthold, Michael R.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5541"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:18Z</dcterms:available> <dcterms:abstract xml:lang="eng">In the last few years a number of different subgraph mining algorithms have been proposed. They are often used for finding frequent fragments in molecular databases. All these algorithms behave quite well when used on small datasets of not more than a few thousand molecules. However, they all fail on larger amounts of data because they are either time consuming or have enormous memory requirements. In this paper we present a hybrid mining technique that overcomes the individual problems of the underlying algorithms and outperforms the individual methods impressively on large databases.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes