Publikation: Osmotic pressure in colloid science : clay dispersions, catanionics, polyelectrolyte complexes and polyelectrolyte multilayers
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Osmotic pressure is a key parameter to understand the thermodynamics and the interactions in colloidal systems. We present here four examples to demonstrate the variety of information that can be extracted from it. The equation of state, i.e. the osmotic pressure versus concentration curve, could be established using analytical ultracentrifugation in binary clay–water mixtures. This method allows a quick and efficient determination of the phase boundaries, and the equation of state shows a good agreement with a Poisson–Boltzmann model. In ternary mixtures of water–anionic surfactant–cationic surfactant, phase separation with a different partitioning of the surfactant in both phases could be evidenced. In the monophasic domains, the surface charge density of the objects could be estimated from the equation of state. In mixtures of polyelectrolytes, different behaviours of the osmotic pressure with respect to the composition could be interpreted in terms of microphase separation, or homogeneous complexation, depending on the composition in polyelectrolyte. Finally, in a colloidal dispersion of spheres coated with polyelectrolytes, three different colloid–colloid interaction regimes could be identified, depending if the polyelectrolyte shells are collapsed onto the colloid, swollen, or non-overlapping. These examples illustrate the variety of information that osmotic pressure can give in a large variety of situations, making this technique an indispensable tool for the physico-chemist
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CARRIÈRE, David, Miles G. PAGE, Monique DUBOIS, Thomas ZEMB, Helmut CÖLFEN, Annette MEISTER, Luc BELLONI, Monika SCHÖNHOFF, Helmut MÖHWALD, 2007. Osmotic pressure in colloid science : clay dispersions, catanionics, polyelectrolyte complexes and polyelectrolyte multilayers. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007, 303(1-2), pp. 137-143. ISSN 0927-7757. eISSN 1873-4359. Available under: doi: 10.1016/j.colsurfa.2007.02.050BibTex
@article{Carriere2007Osmot-40370, year={2007}, doi={10.1016/j.colsurfa.2007.02.050}, title={Osmotic pressure in colloid science : clay dispersions, catanionics, polyelectrolyte complexes and polyelectrolyte multilayers}, number={1-2}, volume={303}, issn={0927-7757}, journal={Colloids and Surfaces A: Physicochemical and Engineering Aspects}, pages={137--143}, author={Carrière, David and Page, Miles G. and Dubois, Monique and Zemb, Thomas and Cölfen, Helmut and Meister, Annette and Belloni, Luc and Schönhoff, Monika and Möhwald, Helmut} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40370"> <dc:contributor>Zemb, Thomas</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Belloni, Luc</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-18T08:57:20Z</dc:date> <dc:creator>Cölfen, Helmut</dc:creator> <dc:contributor>Schönhoff, Monika</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Meister, Annette</dc:contributor> <dc:creator>Möhwald, Helmut</dc:creator> <dcterms:title>Osmotic pressure in colloid science : clay dispersions, catanionics, polyelectrolyte complexes and polyelectrolyte multilayers</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40370"/> <dc:language>eng</dc:language> <dc:contributor>Dubois, Monique</dc:contributor> <dc:creator>Dubois, Monique</dc:creator> <dc:creator>Meister, Annette</dc:creator> <dc:creator>Carrière, David</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Schönhoff, Monika</dc:creator> <dc:creator>Page, Miles G.</dc:creator> <dc:contributor>Cölfen, Helmut</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40370/1/Carriere_2-oshkhwv4tm0c9.pdf"/> <dcterms:abstract xml:lang="eng">Osmotic pressure is a key parameter to understand the thermodynamics and the interactions in colloidal systems. We present here four examples to demonstrate the variety of information that can be extracted from it. The equation of state, i.e. the osmotic pressure versus concentration curve, could be established using analytical ultracentrifugation in binary clay–water mixtures. This method allows a quick and efficient determination of the phase boundaries, and the equation of state shows a good agreement with a Poisson–Boltzmann model. In ternary mixtures of water–anionic surfactant–cationic surfactant, phase separation with a different partitioning of the surfactant in both phases could be evidenced. In the monophasic domains, the surface charge density of the objects could be estimated from the equation of state. In mixtures of polyelectrolytes, different behaviours of the osmotic pressure with respect to the composition could be interpreted in terms of microphase separation, or homogeneous complexation, depending on the composition in polyelectrolyte. Finally, in a colloidal dispersion of spheres coated with polyelectrolytes, three different colloid–colloid interaction regimes could be identified, depending if the polyelectrolyte shells are collapsed onto the colloid, swollen, or non-overlapping. These examples illustrate the variety of information that osmotic pressure can give in a large variety of situations, making this technique an indispensable tool for the physico-chemist</dcterms:abstract> <dc:contributor>Belloni, Luc</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40370/1/Carriere_2-oshkhwv4tm0c9.pdf"/> <dc:contributor>Carrière, David</dc:contributor> <dcterms:issued>2007</dcterms:issued> <dc:contributor>Page, Miles G.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-18T08:57:20Z</dcterms:available> <dc:contributor>Möhwald, Helmut</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Zemb, Thomas</dc:creator> </rdf:Description> </rdf:RDF>