Language, demographics, emotions, and the structure of online social networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Social networks affect individuals’ economic opportunities and well-being. However, few of the factors thought to shape networks—culture, language, education, and income—were empirically validated at scale. To fill this gap, we collected a large number of social media posts from a major US metropolitan area. By associating these posts with US Census tracts through their locations, we linked socioeconomic indicators to group-level signals extracted from social media, including emotions, language, and online social ties. Our analysis shows that tracts with higher education levels have weaker social ties, but this effect is attenuated for tracts with high ratio of Hispanic residents. Negative emotions are associated with more frequent online interactions, or stronger social ties, while positive emotions are associated with weaker ties. These results hold for both Spanish and English tweets, evidencing that language does not affect this relationship between emotion and social ties. Our findings highlight the role of cognitive and demographic factors in online interactions and demonstrate the value of traditional social science sources, like US Census data, within social media studies.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LERMAN, Kristina, Luciano G. MARIN, Megha ARORA, Lucas H. Costa DE LIMA, Emilio FERRARA, David GARCIA, 2018. Language, demographics, emotions, and the structure of online social networks. In: Journal of Computational Social Science. Springer. 2018, 1(1), pp. 209-225. ISSN 2432-2717. eISSN 2432-2725. Available under: doi: 10.1007/s42001-017-0001-xBibTex
@article{Lerman2018Langu-59981, year={2018}, doi={10.1007/s42001-017-0001-x}, title={Language, demographics, emotions, and the structure of online social networks}, number={1}, volume={1}, issn={2432-2717}, journal={Journal of Computational Social Science}, pages={209--225}, author={Lerman, Kristina and Marin, Luciano G. and Arora, Megha and de Lima, Lucas H. Costa and Ferrara, Emilio and Garcia, David} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59981"> <dc:creator>de Lima, Lucas H. Costa</dc:creator> <dcterms:issued>2018</dcterms:issued> <dc:creator>Arora, Megha</dc:creator> <dc:contributor>de Lima, Lucas H. Costa</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:title>Language, demographics, emotions, and the structure of online social networks</dcterms:title> <dc:creator>Marin, Luciano G.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Garcia, David</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-30T11:27:12Z</dc:date> <dc:rights>Attribution 4.0 International</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Marin, Luciano G.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59981/1/Lermann_2-p50yeyqj0n448.pdf"/> <dc:contributor>Ferrara, Emilio</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59981"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Lerman, Kristina</dc:contributor> <dc:contributor>Garcia, David</dc:contributor> <dc:creator>Lerman, Kristina</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59981/1/Lermann_2-p50yeyqj0n448.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-30T11:27:12Z</dcterms:available> <dcterms:abstract xml:lang="eng">Social networks affect individuals’ economic opportunities and well-being. However, few of the factors thought to shape networks—culture, language, education, and income—were empirically validated at scale. To fill this gap, we collected a large number of social media posts from a major US metropolitan area. By associating these posts with US Census tracts through their locations, we linked socioeconomic indicators to group-level signals extracted from social media, including emotions, language, and online social ties. Our analysis shows that tracts with higher education levels have weaker social ties, but this effect is attenuated for tracts with high ratio of Hispanic residents. Negative emotions are associated with more frequent online interactions, or stronger social ties, while positive emotions are associated with weaker ties. These results hold for both Spanish and English tweets, evidencing that language does not affect this relationship between emotion and social ties. Our findings highlight the role of cognitive and demographic factors in online interactions and demonstrate the value of traditional social science sources, like US Census data, within social media studies.</dcterms:abstract> <dc:contributor>Arora, Megha</dc:contributor> <dc:creator>Ferrara, Emilio</dc:creator> </rdf:Description> </rdf:RDF>