Multi-Dimensional Backward Stochastic Riccati Equations, and Applications
Lade...
Dateien
Datum
2000
Autor:innen
Tang, Shanjian
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
Multi-dimensional backward stochastic Riccati differential equations (BSRDEs in short) are studied. A closed property for solutions of BSRDEs with respect to their coeficients is stated and is proved for general BSRDEs, which is used to obtain the existence of a global adapted solution to some BSRDEs. The global existence and uniqueness results are obtained for two classes of BSRDEs, whose generators contain a quadratic term of L (the second unknown component).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
backward stochastic Ricatti equation, stochastic linear-quadratic control problem, algebraic transformation, Feynman-Kac formula
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
KOHLMANN, Michael, Shanjian TANG, 2000. Multi-Dimensional Backward Stochastic Riccati Equations, and ApplicationsBibTex
@techreport{Kohlmann2000Multi-642, year={2000}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Multi-Dimensional Backward Stochastic Riccati Equations, and Applications}, number={2000/29}, author={Kohlmann, Michael and Tang, Shanjian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/642"> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/642"/> <dc:creator>Tang, Shanjian</dc:creator> <dcterms:issued>2000</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kohlmann, Michael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Kohlmann, Michael</dc:creator> <dc:format>application/pdf</dc:format> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/642/1/dp00_29.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/642/1/dp00_29.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Tang, Shanjian</dc:contributor> <dcterms:abstract xml:lang="eng">Multi-dimensional backward stochastic Riccati differential equations (BSRDEs in short) are studied. A closed property for solutions of BSRDEs with respect to their coeficients is stated and is proved for general BSRDEs, which is used to obtain the existence of a global adapted solution to some BSRDEs. The global existence and uniqueness results are obtained for two classes of BSRDEs, whose generators contain a quadratic term of L (the second unknown component).</dcterms:abstract> <dcterms:title>Multi-Dimensional Backward Stochastic Riccati Equations, and Applications</dcterms:title> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:20Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:20Z</dc:date> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein