Recombination Activity of Crystal Defects in Epitaxially Grown Silicon Wafers for Highly Efficient Solar Cells
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Aiming for highly efficient solar cells based on wafers with a low carbon footprint, silicon (Si) EpiWafers are grown epitaxially on reusable, highly doped Si substrates with a stack of porous Si layers (PorSi) for detachment. A state‐of‐the‐art p‐type Si EpiWafer exhibiting a minority charge carrier lifetime of up to 2.2 ms detected at an excess charge carrier density of ≈1 × 10 15 cm −3 by photoluminescence (PL) imaging is presented. This translates to a predicted solar cell efficiency of 25.6%, calculated by efficiency limiting bulk recombination analysis (ELBA), and corresponds to losses of less than 1% abs compared to the theoretical limit of the investigated solar cell concept. A detailed loss analysis shows that the major remaining quality limitations are structural defects, specifically stacking faults (SFs). Therefore, the recombination activity of isolated SFs in epitaxially grown reference (EpiRef) wafers on polished substrates without a PorSi is assessed by highly resolved μPL mappings. The recombination activity rises with the number of dislocations within an SF as demonstrated by a comparison to microscope images. When using highly doped substrates, as currently required for EpiWafer fabrication, EpiRef wafers show more SFs exhibiting additionally a higher number of dislocations than SFs in EpiRef wafers on moderately doped substrates.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RITTMANN, Clara, Ella S. SUPIK, Marion DRIESSEN, Friedemann D. HEINZ, Yves Patrick BOTCHAK, Florian SCHINDLER, Charlotte WEISS, Martin C. SCHUBERT, Stefan JANZ, 2024. Recombination Activity of Crystal Defects in Epitaxially Grown Silicon Wafers for Highly Efficient Solar Cells. In: physica status solidi (a). Wiley. ISSN 1862-6300. eISSN 1862-6319. Verfügbar unter: doi: 10.1002/pssa.202400226BibTex
@article{Rittmann2024-07-23Recom-70643, year={2024}, doi={10.1002/pssa.202400226}, title={Recombination Activity of Crystal Defects in Epitaxially Grown Silicon Wafers for Highly Efficient Solar Cells}, issn={1862-6300}, journal={physica status solidi (a)}, author={Rittmann, Clara and Supik, Ella S. and Drießen, Marion and Heinz, Friedemann D. and Botchak, Yves Patrick and Schindler, Florian and Weiss, Charlotte and Schubert, Martin C. and Janz, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70643"> <dc:creator>Janz, Stefan</dc:creator> <dc:contributor>Supik, Ella S.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-23T08:59:29Z</dcterms:available> <dc:contributor>Botchak, Yves Patrick</dc:contributor> <dc:contributor>Janz, Stefan</dc:contributor> <dc:contributor>Heinz, Friedemann D.</dc:contributor> <dc:creator>Drießen, Marion</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70643"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-23T08:59:29Z</dc:date> <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights> <dc:creator>Schubert, Martin C.</dc:creator> <dc:language>eng</dc:language> <dc:creator>Weiss, Charlotte</dc:creator> <dc:contributor>Schindler, Florian</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/> <dc:creator>Schindler, Florian</dc:creator> <dc:contributor>Schubert, Martin C.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Rittmann, Clara</dc:creator> <dc:contributor>Weiss, Charlotte</dc:contributor> <dc:contributor>Drießen, Marion</dc:contributor> <dcterms:title>Recombination Activity of Crystal Defects in Epitaxially Grown Silicon Wafers for Highly Efficient Solar Cells</dcterms:title> <dc:contributor>Rittmann, Clara</dc:contributor> <dc:creator>Supik, Ella S.</dc:creator> <dcterms:issued>2024-07-23</dcterms:issued> <dc:creator>Heinz, Friedemann D.</dc:creator> <dc:creator>Botchak, Yves Patrick</dc:creator> <dcterms:abstract>Aiming for highly efficient solar cells based on wafers with a low carbon footprint, silicon (Si) EpiWafers are grown epitaxially on reusable, highly doped Si substrates with a stack of porous Si layers (PorSi) for detachment. A state‐of‐the‐art p‐type Si EpiWafer exhibiting a minority charge carrier lifetime of up to 2.2 ms detected at an excess charge carrier density of ≈1 × 10 15 cm −3 by photoluminescence (PL) imaging is presented. This translates to a predicted solar cell efficiency of 25.6%, calculated by efficiency limiting bulk recombination analysis (ELBA), and corresponds to losses of less than 1% abs compared to the theoretical limit of the investigated solar cell concept. A detailed loss analysis shows that the major remaining quality limitations are structural defects, specifically stacking faults (SFs). Therefore, the recombination activity of isolated SFs in epitaxially grown reference (EpiRef) wafers on polished substrates without a PorSi is assessed by highly resolved μPL mappings. The recombination activity rises with the number of dislocations within an SF as demonstrated by a comparison to microscope images. When using highly doped substrates, as currently required for EpiWafer fabrication, EpiRef wafers show more SFs exhibiting additionally a higher number of dislocations than SFs in EpiRef wafers on moderately doped substrates.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>