Comparison of analysis techniques for the lattice Boltzmann method
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We show that the Chapman Enskog expansion can be viewed as a special instance of a general expansion procedure which also encompasses other methods like the regular error expansion and multi-scale techniques and that any two expansions which properly describe the lattice Boltzmann solution necessarily coincide up to higher order terms. For a model problem, both the regular error expansion and the Chapman Enskog expansion are carried out. It turns out that the classical Chapman Enskog method leads to an unstable equation at super-Burnett order in a parameter regime for which the underlying lattice Boltzmann algorithm is stable. However, our approach naturally allows us to consider variants of the super-Burnett equation which do not suffer from instabilities. The article concludes with a detailed comparison of the Chapman Enskog and the regular error expansion.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CAIAZZO, Alfonso, Michael JUNK, Martin Kilian RHEINLÄNDER, 2009. Comparison of analysis techniques for the lattice Boltzmann method. In: Computers & Mathematics with Applications. 2009, 58(5), pp. 883-897. Available under: doi: 10.1016/j.camwa.2009.02.011BibTex
@article{Caiazzo2009Compa-823, year={2009}, doi={10.1016/j.camwa.2009.02.011}, title={Comparison of analysis techniques for the lattice Boltzmann method}, number={5}, volume={58}, journal={Computers & Mathematics with Applications}, pages={883--897}, author={Caiazzo, Alfonso and Junk, Michael and Rheinländer, Martin Kilian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/823"> <dcterms:bibliographicCitation>Publ. in: Computers & Mathematics with Applications 58 (2009), 5, pp. 883-897</dcterms:bibliographicCitation> <dc:contributor>Caiazzo, Alfonso</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:00Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Caiazzo, Alfonso</dc:creator> <dc:creator>Junk, Michael</dc:creator> <dc:contributor>Rheinländer, Martin Kilian</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/823"/> <dc:contributor>Junk, Michael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:00Z</dc:date> <dc:creator>Rheinländer, Martin Kilian</dc:creator> <dcterms:abstract xml:lang="eng">We show that the Chapman Enskog expansion can be viewed as a special instance of a general expansion procedure which also encompasses other methods like the regular error expansion and multi-scale techniques and that any two expansions which properly describe the lattice Boltzmann solution necessarily coincide up to higher order terms. For a model problem, both the regular error expansion and the Chapman Enskog expansion are carried out. It turns out that the classical Chapman Enskog method leads to an unstable equation at super-Burnett order in a parameter regime for which the underlying lattice Boltzmann algorithm is stable. However, our approach naturally allows us to consider variants of the super-Burnett equation which do not suffer from instabilities. The article concludes with a detailed comparison of the Chapman Enskog and the regular error expansion.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2009</dcterms:issued> <dc:language>eng</dc:language> <dcterms:title>Comparison of analysis techniques for the lattice Boltzmann method</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>