A practical guide for inferring reliable dominance hierarchies and estimating their uncertainty

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Sánchez-Tójar, Alfredo
Schroeder, Julia
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung
  1. Many animal social structures are organized hierarchically, with some individuals monopolizing resources. Dominance hierarchies have received great attention from behavioural and evolutionary ecologists.

    2. There are many methods for inferring hierarchies from social interactions. Yet, there are no clear guidelines about how many observed dominance interactions (i.e. sampling effort) are necessary for inferring reliable dominance hierarchies, nor are there any established tools for quantifying their uncertainty.

    3. We simulate interactions (winners and losers) in scenarios of varying steepness (the probability that a dominant defeats a subordinate based on their difference in rank). Using these data, we (1) quantify how the number of interactions recorded and the steepness of the hierarchy affect the performance of five methods for inferring hierarchies, (2) propose an amendment that improves the performance of a popular method, and (3) suggest two easy procedures to measure uncertainty and steepness in the inferred hierarchy.

    4. We find that the ratio of interactions to individuals required to infer reliable hierarchies is surprisingly low, but depends on the steepness of the hierarchy and the method used. We show that David's score and our novel randomized Elo‐rating are the best methods when hierarchies are not extremely steep, where the original Elo‐rating, the I&SI and the recently described ADAGIO perform less well. In addition, we show that two simple methods can be used to estimate uncertainty at the individual and group level, and that the randomized Elo‐rating repeatability provides researchers with a standardized measure valid for comparing the steepness of different hierarchies. We provide several worked examples to guide researchers interested in studying dominance hierarchies.

    5. Methods for inferring dominance hierarchies are relatively robust. We recommend that a ratio of observed interactions to individuals of at least 10 (for steep hierarchies), and ideally 20 serves as a good benchmark. Our simple procedures for estimating uncertainty in the observed data will facilitate evaluating whether sufficient data have been collected, while plotting the shape of the hierarchy will provide new insights into the social structure of the study organism.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SÁNCHEZ-TÓJAR, Alfredo, Julia SCHROEDER, Damien R. FARINE, 2018. A practical guide for inferring reliable dominance hierarchies and estimating their uncertainty. In: The Journal of Animal Ecology. 2018, 87(3), pp. 594-608. ISSN 0021-8790. eISSN 1365-2656. Available under: doi: 10.1111/1365-2656.12776
BibTex
@article{SanchezTojar2018-05pract-42282,
  year={2018},
  doi={10.1111/1365-2656.12776},
  title={A practical guide for inferring reliable dominance hierarchies and estimating their uncertainty},
  number={3},
  volume={87},
  issn={0021-8790},
  journal={The Journal of Animal Ecology},
  pages={594--608},
  author={Sánchez-Tójar, Alfredo and Schroeder, Julia and Farine, Damien R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42282">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-09T09:46:18Z</dcterms:available>
    <dc:contributor>Schroeder, Julia</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-09T09:46:18Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42282"/>
    <dc:contributor>Sánchez-Tójar, Alfredo</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">1. Many animal social structures are organized hierarchically, with some individuals monopolizing resources. Dominance hierarchies have received great attention from behavioural and evolutionary ecologists.&lt;br /&gt;&lt;br /&gt;2. There are many methods for inferring hierarchies from social interactions. Yet, there are no clear guidelines about how many observed dominance interactions (i.e. sampling effort) are necessary for inferring reliable dominance hierarchies, nor are there any established tools for quantifying their uncertainty.&lt;br /&gt;&lt;br /&gt;3. We simulate interactions (winners and losers) in scenarios of varying steepness (the probability that a dominant defeats a subordinate based on their difference in rank). Using these data, we (1) quantify how the number of interactions recorded and the steepness of the hierarchy affect the performance of five methods for inferring hierarchies, (2) propose an amendment that improves the performance of a popular method, and (3) suggest two easy procedures to measure uncertainty and steepness in the inferred hierarchy.&lt;br /&gt;&lt;br /&gt;4. We find that the ratio of interactions to individuals required to infer reliable hierarchies is surprisingly low, but depends on the steepness of the hierarchy and the method used. We show that David's score and our novel randomized Elo‐rating are the best methods when hierarchies are not extremely steep, where the original Elo‐rating, the I&amp;SI and the recently described ADAGIO perform less well. In addition, we show that two simple methods can be used to estimate uncertainty at the individual and group level, and that the randomized Elo‐rating repeatability provides researchers with a standardized measure valid for comparing the steepness of different hierarchies. We provide several worked examples to guide researchers interested in studying dominance hierarchies.&lt;br /&gt;&lt;br /&gt;5. Methods for inferring dominance hierarchies are relatively robust. We recommend that a ratio of observed interactions to individuals of at least 10 (for steep hierarchies), and ideally 20 serves as a good benchmark. Our simple procedures for estimating uncertainty in the observed data will facilitate evaluating whether sufficient data have been collected, while plotting the shape of the hierarchy will provide new insights into the social structure of the study organism.</dcterms:abstract>
    <dcterms:issued>2018-05</dcterms:issued>
    <dc:creator>Schroeder, Julia</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Sánchez-Tójar, Alfredo</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:title>A practical guide for inferring reliable dominance hierarchies and estimating their uncertainty</dcterms:title>
    <dc:creator>Farine, Damien R.</dc:creator>
    <dc:contributor>Farine, Damien R.</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen